Computational physics

Level: General

Prerequisites: Linear algebra

- Numerical methods
 - Interpolation of a function
 - Least-squares interpolation
 - Spline approximation
 - Numerical differentiation
 - Numerical integration;
 - Root finding methods
 - Ordinary differential equation (Euler method, Runge-Kutta method)
 - Systems of inhomogeneous linear equations (Gaussian eliminations, QR decomposition, iterative solutions of inhomogeneous linear equation)
 - Fast Fourier transform
 - Random numbers and Monte Carlo methods
 - Eigenvalues and eigenvectors of large matrices
- Applications
 - —
 - Numerical solution of the Schroedinger equation
 - * Shooting method
 - * Variational method
 - * Spectral methods (Rayleigh-Ritz method)
 - * Pseudospectral methods (collocation)
 - * Mode matching
 - $\ast\,$ Problems in one, two and three dimensions
 - Numerical solution of the Helmholtz equation
 - * Method of multiple solutions;
 - * Spectral and pseudospectral methods;
 - * Numerical verification of Weyl's law;
 - Random walks and brownian motion

Bibliography

- R. Landau, Computational physics, Wiley
- P.O.J. Scheer, Computational physics, Springer
- J.M. Thijssen, Computatioal physics, Cambridge University press