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Chapter 1

Introduction

The work reported in this thesis is naturally divided into two parts. In the first one, we
present results on the embeddability of arrangements of pseudocircles into surfaces. In the
second part, we include our work on the number of unknot diagrams associated to a given
shadow. Thus the first part falls into the realm of Topological Graph Theory, whereas the
second is mainly concerned with Knot Theory.

At a first glance, this thesis then might appear to be the union of two rather disjoint
pieces of work. Our own point of view differs with this possible assessment, and we shall use
part of this introductory chapter to explain how we ended up working in these (and other)
problems in the course of my Ph.D. studies.

1.1 From drawings to arrangements of pseudocircles
Originally, my thesis project revolved around Graph Drawing, in particular dealing with
crossing numbers of complete and complete bipartite graphs. At some point in time we
were mostly investigating drawings of complete graphs, aiming to verify the Harary-Hill
Conjecture for some wide, interesting family of drawings. We came across Jan Kynčl’s
interesting question published in MathOverFlow [33], in which he raises several interesting
questions on (spherical and) pseudospherical drawings.

We found Kynčl’s discussion and questions very enticing, and started to work to get a
better understanding of pseudospherical drawings. To continue this discussion, it is worth
saying a few words about the notion of a pseudospherical drawing. A drawing of a graph
G in the sphere is spherical if each edge is contained in a great circle of the sphere. This is
a natural generalization of rectilinear drawings in the plane. These are drawings in which
each edge is a straight segment; equivalently, each edge is contained in a straight line. Thus
spherical drawings are indeed the natural generalization, in the sphere, to the widely studied
rectilinear drawings in the plane.

The idea behind the concept of a pseudospherical drawing is to mimic the relation of
rectilinear drawings with pseudolinear drawings. We recall that a drawing in the plane is
pseudolinear if each edge can be extended to a pseudoline, so that the resulting collection is an
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arrangement of pseudolines. Arrangements of pseudolines are a classical, important notion in
combinatorial geometry [26]. In the realm of spherical drawings, the natural generalization
is that a pseudospherical drawing is one in which each edge can be extended to a pseudocircle
(simple closed curve in the sphere), so that each pair of these pseudocircles intersect exactly
in two points, at which they cross. In other words, the resulting pseudocircles form an
arrangement of pseudocircles.

The relationship between rectilinear and pseudolinear drawings is an interesting, active
field of research in graph drawing, and it has led to some of the most important results
known for the rectilinear crossing number of complete graphs [1, 2, 38]. This fruitful inter-
play between rectilinear and pseudolinear drawings led several researchers to propose and
investigate several questions on pseudospherical drawings. Among them, as we mentioned
above, is Kynčl’s MathOverFlow entry [33].

Coincidentally, as we started out investigating some of the questions raised by Kynčl,
we participated in a workshop in which Oswin Aichholzer presented several results and
questions on pseudospherical drawings. A natural, important question in which we had
already started to work on, is the following: is it true that every drawing of a complete
graph is pseudospherical? Aichholzer presented a drawing of K6 that was claimed not to
be pseudospherical. We took a strong interest in this example, with the goal of trying to
characterize which drawings of Kn were pseudospherical.

After spending some time working with this particular example, we realized that this
drawing was actually pseudospherical. This drawing is illustrated in Figure 1.1. The edges
of K6 are drawn as solid segments, and the dotted segments are the extensions (of the edges)
to pseudocircles, so that the result is an arrangement of pseudocircles.

Figure 1.1: A pseudospherical drawing of K6.
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Motivated by this finding, which again left open the question of whether or not every
drawing of Kn is pseudospherical, we set out to review the literature in order to learn as
much as possible about arrangements of pseudocircles. To our surprise, we found scarcely
any results on this topic.

One statement that particularly attracted our attention was a result by Ortner (namely [41,
Theorem 10]), claiming that an arrangement of pseudocircles is embeddable into the sphere
if and only if all its 4-subarrangements are embeddable into the sphere. We thought that
this characterization, or some variant of it, had some potential to be used in our quest to
characterize which drawings of Kn are pseudospherical.

As we proceeded to read in detail Ortner’s paper, we found the topic highly interesting.
A conjecture posed at the end of that paper caught our attention: can these results be
generalized to arbitrary compact surfaces? We got seriously engaged in this question, and
shifted our focus, from pseudospherical drawings of complete graphs, to the embeddability
of arrangements of pseudocircles into compact surfaces.

1.2 Arrangements of pseudocircles in surfaces
There are several variants of the notion of an arrangement of pseudocircles in the literature.
These variants are discussed in Section 2.1. As far as we know, the concept originated
with Grünbaum, who defined them as collections of simple closed curves (pseudocircles) that
pairwise intersect in exactly two points, at which they cross. In [41], Ortner also includes
the requirement that no three pseudocircles have a point in common.

Working under this definition from [41], we eventually settled Ortner’s question by show-
ing that an arrangement of pseudocircles is embeddable into the compact orientable surface
Σg of genus g if and only if each of its (4g + 4)-subarrangements embed into Σ. As we
tried to streamline our arguments, we realized that the core arguments we were using did
not make full use of the conditions in this definition. In the end, we found out that we
did not need that every pair of pseudocircles crossed each other exactly twice, or that no
three pseudocircles had a common intersection. For the final proof, we only needed that
the pseudocircles intersect each other a finite number of times, and that some pseudocircle
intersected all the other pseudocircles in the collection. As Ortner had observed in [41],
some form of this last condition is absolutely necessary in order to obtain some result along
these lines. With this relaxed definition of an arrangement of pseudocircles, we were able to
prove our main theorem: an arrangement of pseudocircles is embeddable into the compact
orientable surface Σg of genus g if and only if each of its (4g + 5)-subarrangements embed
into Σ. As we mentioned above, this can be strengthened to 4g + 4 under the definition of
an arrangement given in [41].

These results are stated in Chapter 2. At the end of that chapter, we show that these
results can be reformulated in terms of the genera of the subarrangements of an arrangement.
These statements are proved in Chapter 3. For the proofs, we introduce the concept of a
cluster of graphs, which is a collection of pairwise edge-disjoint connected graphs embedded
in some (the same) surface, with the condition that there is a graph in the collection (an
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anchor) that intersects all the other graphs.
The notion of a cluster of graphs turns the question of the embeddability of an arrange-

ments of pseudocircles into a question about the genera of subclusters of a given cluster of
graphs. This is stated as the Main Theorem in Section 3.1: if the genus of the union of a
cluster of graphs H is at least g, then there is a subcluster Hg of size at most 4g + 5 such
that the genus of the union of the graphs in Hg is also at least g. As we explain in that
section, the results given above on arrangements of pseudocircles follow immediately from
this statement.

The proof of the Main Theorem encompasses the rest of Chapter 3. The heart of the
proof is the use of an analogue of Thomassen’s 3-path-property for trails of an embedded
graph. The seeds of this technique (to which we informally refer to as “short-circuiting
non-separating cycles”) can be traced back to the work in [41].

We close Part I of this thesis with Chapter 4, where we include some concluding remarks
and open questions.

1.3 From arrangements of pseudocircles to knot theory
In the last stages of our work on arrangements of pseudocircles, an opportunity came up to
visit Prof. Jorge L. Ramírez-Alfonsín (at the Université de Montpellier) for four weeks. As we
tried to find some common interests, the topic of arrangements of pseudocircles came up, and
Prof. Ramírez-Alfonsín proposed to investigate a totally different aspect of an arrangement
of pseudocircles.

In general terms, the proposal was to regard an arrangement of pseudocircles as a shadow
of a link, and to investigate how many distinct link types can be obtained from this shadow.
If we start with an arrangement of pseudocircles which, regarded as an embedded graph,
has n vertices, then there are 2n link diagrams that have this arrangement as their shadow.
This follows simply because there are two distinct ways to assign the over/undercrossing
information at each of the n vertices. The question we set out to investigate was: among
these 2n diagrams, how many nonequivalent link types are there?

We focused our attention on arrangements of pseudocircles as defined in [41]: each pair of
pseudocircles cross each other exactly twice, and no three pseudocircles meet at a common
point. We note that this last condition is quite natural in this context, as in knot theory it
is customary to work with regular diagrams.

During this research stay, and in the subsequent months, we obtained results on two
particular types of arrangements of pseudocircles. An instance of the first family of arrange-
ments (which we call ring arrangements) is illustrated in Figure 1.2. It is easy to see how to
generalize this 4-arrangement to an arrangement of k pseudocircles, for any positive integer
k. Specifically, we worked on positive link diagrams that had a ring arrangement as their
shadow.

Let us recall the definition of a positive crossing, and of a positive link diagram. If as
we travel along a link component (following its orientation) pass over a crossing, and the
strand underneath (following its orientation) goes from right to left, the crossing is positive;
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C1

C2

C3

C4

Figure 1.2: The ring arrangement of order 4.

otherwise the crossing is negative. Thus a positive crossing looks as in Figure 1.3(a), and
a negative crossing looks as in Figure 1.3(b). Therefore every crossing in an oriented link
diagram is either positive or negative, and a diagram is positive if all its crossings are positive.

(a) (b)

Figure 1.3: In (a) we illustrate a positive crossing, and in (b) a negative crossing.

A ring arrangement with k pseudocircles induces 2k positive link diagrams, as for each
of the k pseudocircles there are two possible ways to choose its orientation, and once the
orientation is given the diagram gets determined, by the positiveness condition. The question
we investigated was the following. Among these 2k link diagrams, how many (and which)
distinct link types are there? We fully answered this question, both for ring links and for a
related family of arrangements of pseudocircles.

Even though we do not include our results on this problem in this thesis, we mention
them because later on this investigation this aproach led us to work on a related problem
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that is a main part of this thesis. As we reviewed the literature on the topic, we found very
few results in this direction. We moved on to asking questions of an even more basic nature,
such as: how many distinct knot types can one obtain from a given shadow? We finally
settled on what is seemingly the most elementary question one could ask in this direction:
how many unknot diagrams can one obtain from a given shadow?

Our investigations around this basic question turned out to be very fruitful, and constitute
Part II of this thesis.

1.4 Unknot and knotted diagrams arising
from a given shadow

As we mentioned in the previous section, the leading problem in Part II of this thesis is to
take a knot shadow S with n vertices, and investigate, out of the 2n diagrams that have S
as their shadow, how many are unknot diagrams. The basic notions in knot theory that are
used in this thesis are reviewed in Chapter 5.

We found in the literature several interesting results on the complement of this question
(how many are knotted diagrams). This question arises naturally in the context of long
polymer chains, and has been investigated roughly in the following form. If one takes a
random knot diagram, what is the probability that it is not a diagram of the unknot? We
review the related work around this question in Section 6.1.2.

Back to our question, we did not find any relevant results in the literature. A folklore
result that is a staple in every elementary knot theory course is that, given any shadow S,
there is always at least one unknot diagram that has S as its shadow. The main statement we
proved (Theorem 9) is that if S has n vertices, then there are at least 2 3√n unknot diagrams
that have S as their underlying shadow. Most of Chapter 6 is devoted to the proof of this
result.

Finally, we turned our attention to another quite natural question. Given a knot shadow,
is there an over/under assignment at its vertices such that the resulting diagram is a diagram
of the trefoil knot? We investigate this, and some related questions, in Chapter 7.

It is easy to see that there exist arbitrarily large shadows that do not have this property
(for instance, those shadows that look like the one in Figure 6.3). These shadows, which we
call simple, have the property that every diagram associated to them is an unknot diagram.

Thus we started out by characterizing which shadows are simple. This turned out to
be a straightforward characterization: a shadow is simple if and only if each of its vertices
is a cut-vertex (Theorem 14). After presenting this characterization, we proceed to show
(Theorem 15) that every shadow that is not simple has an over/under assignment at its
vertices that gives a diagram of the trefoil knot.

It seems natural to wonder if similar results can be proved for other shadows, such as
the figure-eight knot (after the trefoil knot, the simplest knot). In this direction, we showed
that no such statement holds, not only for the figure-eight knot, but for every knot with
even crossing number. This is the content of Observation 16, also in Chapter 16.
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We close Part II of this thesis with Chapter 8, where we include some concluding remarks
and open questions.
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Chapter 2

Arrangements of pseudocircles
on surfaces

The first part of this thesis is motivated by a question posed in [41]. In that paper, Ortner
proved that an arrangement of pseudocircles is embeddable into the sphere if and only if all
of its subarrangements of size at most 4 are embeddable into the sphere. Ortner asked if an
analogous result held for embeddability into a compact orientable surface Σg of genus g > 0.
We answer this question positively, under an even more general definition of an arrangement
of pseudocircles than the one considered in [41]:

Theorem 1. An arrangement of pseudocircles is embeddable into Σg if and only if all of its
subarrangements of size at most 4g + 5 are embeddable into Σg.

As we will see, for the arrangements investigated in [41] (what we will call strong ar-
rangements), the size bound 4g + 5 can be improved to 4g + 4.

We show that Theorem 1 follows as a consequence of a more general result on the genera of
subgraphs of an embedded graph (namely the Main Theorem in Section 3.1). This connection
is based on the embedded graph naturally induced by an arrangement of pseudocircles. As
we show at the end of this section, Theorem 1 can be equivalently formulated by saying that
if the embedded graph induced by an arrangement of pseudocircles has genus greater than g
for some g ≥ 0 (we recall the definition of the genus of an embedded graph in Section 2.2),
then there is a subarrangement of size at most 4g + 5 whose induced embedded graph has
genus greater than g.

Before we arrive to this equivalent formulation, we need to review the concept of an
arrangement of pseudocircles (Section 2.1), as well as the notion of the embeddability of an
arrangement into a surface (Section 2.2).

2.1 Arrangements of pseudocircles
A pseudocircle is a simple closed curve on a surface. There exist several variations on the
definition of an arrangement of pseudocircles in the literature. These objects were introduced
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by Grünbaum in [26] (he called them arrangements of curves), who required that any two
pseudocircles in the collection intersect each other in exactly two points, at which they
cross. Under Grünbaum’s definition, arrangements of pseudocircles generalize arrangements
of circles, in the same way as arrangements of pseudolines generalize arrangements of lines.

Sometimes the pseudocircles in the collection are not required to intersect each other
(in [42], an arrangement in which every two pseudocircles intersect is called complete). This
relaxed definition is used for instance in [28], where Kang and Müller showed (among other
results) that every arrangement of at most four pseudocircles in the plane is isomorphic to
an arrangement of circles (see also [35, 36]). In addition, sometimes tangential intersections
between pseudocircles are allowed. Grünbaum himself proposed this relaxed notion where
tangential intersections (or osculations) are possible, leading to the concept of a weak ar-
rangement of curves. This more general notion is adopted for instance in [5], where Agarwal
et al. gave an upper bound on the number of empty lenses in arrangements of pseudocircles,
and derived several important applications of this result. Moreover, in the combinatorial
formalism of arrangements given in [34], Linhart and Ortner allow pseudocircles to intersect
each other more than twice.

The definition used in [41] is in line with the original concept introduced by Grünbaum,
with the additional condition that no three pseudocircles meet at a common point. In [41],
Ortner defines an arrangement of pseudocircles as a finite collection of pseudocircles in some
compact orientable surface, such that:

(i) no three pseudocircles meet each other at the same point;

(ii) each intersection point between pseudocircles is a crossing, rather than tangential; and

(iii) each pair of pseudocircles intersects exactly twice.

We call these collections strong arrangements of pseudocircles, to distinguish them from a
more general version that we present below.

The motivation behind this version we introduce below is that we realized that our results
hold in this more general setting. We need not assume Conditions (i) and (ii). Moreover,
we do not need the full strength of (iii), where it is required that every pair of pseudocircles
intersect each other: it suffices to ask that there is a pseudocircle intersected by all the other
pseudocircles in the collection.
Definition 1. An arrangement of pseudocircles is a finite collection of pseudocircles in some
compact orientable surface (the host surface of the arrangement) that pairwise intersect a
finite number of times (possibly zero), and such that there exists a pseudocircle that is
intersected by all the other pseudocircles in the collection. A pseudocircle with this property
(it need not be unique) is an anchor of the arrangement.

This is the definition that we adopt in this work. Clearly, every strong arrangement is
also an arrangement according to this definition. A natural generalization of this definition
would be to drop the requirement that one pseudocircle is intersected by all the others.
However, as we discuss in Chapter 4 (and, as it was pointed out in [41]), without some
minimal requirement of this form, no result along the lines of Theorem 1 holds.
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2.2 Embeddability of an arrangement of pseudocircles
into a surface

Theorem 1 is a statement about the embeddability of an arrangement of pseudocircles into
a surface. Since an arrangement is by definition already embedded on a surface, the notion
of its embeddability into another surface must be clarified. This concept is based on the
isomorphism between arrangements of pseudocircles.

An arrangement of pseudocircles Γ can be naturally regarded as an embedded graph,
whose vertices are the points where the pseudocircles intersect each other. Following [41],
this embedded graph is the arrangement graph of Γ.

We emphasize that an arrangement graph is an embedded graph, that is, an abstract graph
(a combinatorial entity with vertices and edges) with a fixed embedding on some surface.
To continue with our discussion on the embeddability of an arrangement into a surface, we
need to recall when two embedded graphs are isomorphic. To proceed, we first remind the
reader that the rotation around a vertex v in an embedded graph G is a cyclic permutation
of the edges incident with v; this cyclic rotation records the clockwise order in which these
edges leave v in the embedding.

Suppose that G is an embedded graph (on some surface), with vertex set V and edge set
E, and G′ is an embedded graph (on some surface), with vertex set V ′ and edge set E ′. Then
(the embedded graphs) G and G′ are isomorphic if there is a mapping φ : V ∪E → V ′ ∪E ′
that is a graph isomorphism when G and G′ are regarded as abstract graphs, and in addition
the following holds: if the rotation in G of vertex v is (e1e2 · · · em), then the rotation of φ(v)
in G′ is

(
φ(e1)φ(e2) · · ·φ(em)

)
. Thus two embedded graphs are isomorphic if their underlying

abstract graphs have an isomorphism that preserves and reflects not only the structure of
the graphs but also their embeddings.

Remark. Throughout this work, whenever we have two embedded graphs G and G′, and
mention they are isomorphic, it is tacitly understood that they are isomorphic as embedded
graphs, and not only (the weaker, implied fact) that their underlying abstract graphs are
isomorphic.

We are now ready to recall when two arrangements of pseudocircles are isomorphic. Let
Γ = {γ1, γ2, . . . , γn} and ∆ = {δ1, δ2, . . . , δn} be arrangements of pseudocircles (note they
have the same size). Let G and G′ be the arrangement graphs of Γ and ∆, respectively. Then
Γ and ∆ are isomorphic arrangements if there is an isomorphism from G to G′ that maps
the pseudocircles in Γ to the pseudocircles in ∆. Formally, Γ and ∆ are isomorphic if there
is an isomorphism φ : V ∪ E → V ′ ∪ E ′ from G to G′, and a permutation ρ(1) ρ(2) · · · ρ(n)
of 1 2 · · · n such that the following holds: if the cycle in G corresponding to the pseudo-
circle γi is v0e1v1 . . . emv0, then the cycle in G′ corresponding to the pseudocircle δρ(i) is
φ(v0)φ(e1)φ(v1) . . . φ(em)φ(v0).

At an informal level, this reflects the intuitive notion that two arrangements of pseu-
docircles are isomorphic if after one removes the whole host surface except for a very thin
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strip around each edge, and a very small disk around each vertex, the arrangements are
undistinguishable.
Definition 2. An arrangement of pseudocircles Γ is embeddable into Σg if there is an ar-
rangement ∆ isomorphic to Γ such that the host surface of ∆ is Σg.

We prove Theorem 1 under an equivalent form we give below, which is given in terms
of the genus of embedded graphs. We refer the reader to [39] for basic concepts on graph
embeddings, such as the facial walks ([39, Sec. 4.1]) and the genus ([39, Eq. (4.2)]) of an
embedded graph.

For this discussion we recall that if G is an embedded graph with vertex set V , edge set E,
and set of facial walksW , then the genus gen(G) of G is gen(G) := (1/2)(2−|V |+|E|−|W|).
The essential property of the genus of an embedded graph that we will use is that G is
isomorphic to a graph embedded in Σg if and only if gen(G) ≤ g.

Let Γ be an arrangement of pseudocircles, and let G be its arrangement graph. It follows
immediately from Definition 2 that Γ is embeddable into Σg if and only if G is isomorphic
to a graph embedded in Σg. Now from our previous remark, this last condition holds if and
only if gen(G) ≤ g. Thus we obtain that Γ is embeddable into Σg if and only if gen(G) ≤ g.
Equivalently, Γ is not embeddable into Σg if and only if gen(G) > g.

With this observation in hand, we note that Theorem 1 can be equivalently interpreted by
saying that if Γ is not embeddable into Σg, then Γ has a subarrangement Γ′ of bounded size
(at most 4g + 5) that already witnesseses this non-embeddability; that is, the arrangement
graph G′ of Γ′ satisfies gen(G′) > g. We now write this equivalent formulation of Theorem 1
formally, as this is the version under which we work in the next chapter.

Theorem 1 (Equivalent form). Let Γ be an arrangement of pseudocircles with arrangement
graph G, and let g ≥ 0 be an integer. Then gen(G) > g if and only if Γ has a subarrangement
Γ′, with |Γ′| ≤ 4g + 5, such that the arrangement graph G′ of Γ′ satisfies gen(G′) > g.
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Chapter 3

Proof of Theorem 1

We devote this chapter to the proof of Theorem 1, in its equivalent form given at the end of
Chapter 2.

3.1 Clusters of graphs, the Main Theorem,
and proof of Theorem 1

As we came up with the proof of Theorem 1, we realized that our arguments held in a
more general setting, and so we ended up obtaining it as a consequence of a more general
result. In this section we state this result (the Main Theorem of this chapter), and show
that Theorem 1 follows as a corollary.

In its equivalent formulation given at the end of Chapter 2, Theorem 1 can be interpreted
as saying that if an embedded graph G with gen(G) > g can be decomposed into a collection
C of edge-disjoint cycles, where one cycle in C intersects all the other cycles in C, then there
is a subcollection C ′ of C, with |C ′| ≤ 4g + 5, such that gen

(⋃
C∈C′ C

)
> g. When we proved

this statement, we realized that our arguments did not depend on the assumption that the
elements of C were cycles; we only needed their connectedness, and the property that some
element in C intersects all the other elements of C.

This led us to the following concept. A collection H of pairwise edge-disjoint connected
graphs simultaneously embedded in a surface is a cluster of graphs if there is a graph H in
H (an anchor of H) that intersects every graph in H.

The arrangement graph associated to an arrangement of pseudocircles can thus be natu-
rally regarded as (the union of) a cluster of graphs: each pseudocircle corresponds to a cycle
in the cluster, where the cycle that corresponds to an anchor pseudocircle is an anchor of
the cluster.

Our main result in this chapter is the following statement, which is thus a generalization
of Theorem 1. Throughout this chapter, if H is a family of graphs embedded on the same
surface (such as a cluster), we use ⋃H to denote the embedded graph that is the union of
the elements of H.
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Main Theorem. (Implies Theorem 1). Let H be a cluster of graphs such that gen(⋃H) > g,
for some g ≥ 0. Then there is an Hg ⊆ H with |Hg| ≤ 4g + 5, such that gen(⋃Hg) > g.

In Section 3.2 we state two lemmas and show that they imply the Main Theorem. The
rest of the chapter is then almost entirely devoted to the proofs of these lemmas.

We close this section by showing that Theorem 1 is an easy consequence of the Main
Theorem. From the previous discussion this could be seen as a mere formality, but we write
it for completeness.

Proof of Theorem 1. As we have mentioned, we will prove Theorem 1 in its equivalent for-
mulation given at the end of Section 2.2. The “only if” part is trivial: if a subgraph G′ of
an embedded graph G satisfies gen(G′) > g, then obviously gen(G) > g.

For the “if” part, let Γ = {γ, γ1, . . . , γn} be an arrangement of pseudocircles, where γ is
an anchor of Γ. Let G be the arrangement graph of Γ, and suppose gen(G) > g for some
g ≥ 0. Now let C be the cycle in G induced by γ, and let Ci be the cycle in G induced by
γi, for i = 1, 2, . . . , n.

Then clearly C = {C,C1, . . . , Cn} is a cluster of graphs with anchor C. By the Main
Theorem, there exists a Cg ⊆ C, with |Cg| ≤ 4g + 5, such that gen(⋃ Cg) > g. Now let Γ′ be
the subcollection of Γ that consists of the pseudocircles that induce the cycles in Cg. Then
Γ′ satisfies the required conditions, since |Γ′| = |Cg| ≤ 4g+ 5, ⋃ Cg is the arrangement graph
of Γ′, and gen

(⋃ Cg) > g.

As we have already mentioned, the size bound 4g+5 in Theorem 1 can be slightly refined
(to 4g+4) for the class of arrangements considered in [41]. This improvement relies not only
on the Main Theorem, but on its proof. Thus we prove this refinement of Theorem 1 in the
next section, immediately after the proof of the Main Theorem (see Remark at the end of
Section 3.2.1).

3.2 Proof of the Main Theorem
As we shall see shortly, the Main Theorem follows easily by an induction based on the
following statement. We note that if H is an anchor of a cluster H, then in particular H is
an embedded graph (subgraph of the embedded graph ⋃H), and as such, H has a genus.
We encourage the reader to follow our own custom, which is to informally think of our next
statement as “at most 4 graphs of the cluster need to be added to the anchor, to obtain a
graph whose genus is greater than the genus of the anchor”.

Theorem 2. Let H be a cluster of graphs with anchor H. Suppose that gen(H) < gen(⋃H).
Then there is a subcollection H ⊆ H, with H ∈ H and |H| ≤ 5, such that gen(H) <

gen
(⋃H).
In Section 3.2.2 we state two lemmas and show that they imply Theorem 2. Before we

proceed to that, we show that the Main Theorem follows from this statement.
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3.2.1 The Main Theorem follows from Theorem 2
Proof of the Main Theorem. Assuming Theorem 2, we prove the Main Theorem by induction
on g, for a fixed cluster of graphs H with anchor H.

For the base case g = 0 the assumption is that gen(⋃H) > 0. If gen(H) > 0 then
we are done by taking H0 := {H}, and so we may assume that gen(H) = 0. In this case
we apply Theorem 2, to obtain a subcollection H ⊆ H, with H ∈ H and |H| ≤ 5 such
that gen(H) < gen(⋃H). Thus in particular gen(⋃H) > 0, and so we are done by setting
H0 := H.

We now suppose that the Main Theorem holds for g = h for some h ∈ {0, 1, . . . , gen(⋃H)−
2}, and show that then it holds for g = h + 1. (Note that the largest value of g for which
the statement of the Main Theorem makes sense is g = gen(⋃H)− 1).

The assumption that the statement holds for g = h means that there is a subcollection
Hh of H with |Hh| ≤ 4h + 5 such that gen(⋃Hh) > h. If gen(⋃Hh) > h + 1 then we are
done by setting Hh+1 := Hh, so we may assume that gen(⋃Hh) = h + 1. Note that since
h ≤ gen(⋃H)− 2, it follows that gen(⋃H) > h+ 1.

Let K := ⋃Hh, and let K be the collection {K}∪ (H\Hh). We claim that K is acluster
of graphs with anchor K. To see this, note that every graph in H intersects H, and so in
particular every graph in H \ Hh intersects H. Since H is contained in K, it follows that
every graph in H \Hh intersects K. This proves the claim.

Note that ⋃K = ⋃H. Thus gen(⋃K) = gen(⋃H) > h+1. Since gen(K) = gen(⋃Hh) =
h+1, it follows that gen(K) < gen(⋃K). Thus by Theorem 2 there is a subcollection K ⊆ K,
with K ∈ K and |K| ≤ 5, such that gen(⋃K) > gen(K). Let Hh+1 := Hh∪

(
K\{K}

)
. Note

that ⋃K = ⋃Hh+1. Thus Hh+1 is a subcollection of H such that |Hh+1| = |Hh|+ |K| − 1 ≤
|Hh|+ 4 ≤ (4h+ 5) + 4 = 4(h+ 1) + 5. Since gen(⋃Hh+1) = gen(⋃K) > gen(K) = h+ 1, it
follows that Hh+1 satisfies the required properties.

Remark. As we mentioned in Section 2.2, the size bound 4g+5 in Theorem 1 can be improved
to 4g + 4 if the arrangement of pseudocircles under consideration is strong. To see this, we
note that the size bound 4g + 5 in the Main Theorem can be improved to 4g + 4 if for the
base case in the proof we can guarantee the existence of an H0 with |H0| ≤ 4 and such that
gen(H0) > 0. Now if Γ is a strong arrangement of pseudocircles that cannot be embedded
into the sphere, [41, Theorem 10] guarantees that there is a subarrangement Γ0 of size at
most 4 that cannot be embedded into the sphere. Thus in this case the collection H0 of those
cycles (in the cluster of graphs H associated to Γ) that correspond to the pseudocircles in
Γ0 satisfies |H0| ≤ 4 and gen(H0) > 0, as required.

3.2.2 Reducing Theorem 2 to two lemmas
We now show that Theorem 2 is an easy consequence of two lemmas we state below, and
whose proofs encompass most of the rest of this chapter. These lemmas involve the concept
of the degeneracy of a face of an embedded graph, which we now proceed to explain.
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First we recall that if G is an embedded graph, then a face of G is a connected component
of R2 \G. If a graph is cellularly embedded (that is, if each face is homeomorphic to an open
disk), then the collection of facial walks determines the embedding, but this is not true for a
non-cellularly embedded graph. In the general case, each face is homeomorphic to a compact
surface of some genus g ≥ 0 from which a finite number m ≥ 1 of points have been removed;
here g is the genus of the face, and d := m − 1 its degeneracy. For a face with degeneracy
d, there are d+ 1 facial walks that bound the face. In a cellular embedding, both the genus
and the degeneracy of each face are equal to zero. Indeed, each face is bounded by a single
facial walk (that is, its degeneracy is zero), and each face is homeomorphic to an open disk,
that is, to a sphere (compact surface of genus 0) with 1 point removed. If a face has positive
degeneracy, then we say it is degenerate; otherwise it is non-degenerate.

We illustrate the concepts of genus and degeneracy of a face in Figure 3.1. In this
embedded graph, each of the faces F2, F3, and F4 is homeomorphic to an open disk (that
is, to a sphere minus one point), and so it has both genus and degeneracy zero. Face F1 is
homeomorphic to a torus minus one point, so it has genus 1 and degeneracy zero. Finally, F5
is homeomorphic to a sphere minus two points (note that it is bounded by two facial walks),
and so it has genus zero and degeneracy 1.

F1
F5

F3

F4

F2

Figure 3.1: Illustration of the genus and the degeneracy of the faces of an embedded graph.
Faces F2, F3, and F4 have both genus and degeneracy zero. The fact that F4 has degeneracy
zero may not be immediately obvious, but it is readily verified since it does not contain any
non-contractible simple closed curve. Face F1 has genus 1 and degeneracy zero, and F5 has
genus zero and degeneracy 1.

We are ready to state the lemmas that, put together, imply Theorem 2. We note that in
both lemmas we assume that ⋃H is cellular. This is an essential assumption for the proofs
of these lemmas but, as we shall see shortly, Theorem 2 will follow even if its statement does
not include this as a hypothesis.

The first key lemma is the following, which we informally capture by saying that “if the
anchor has a degenerate face, then at most 2 graphs of the cluster need to be added to the
anchor, to obtain a graph whose genus is greater than the genus of the anchor”.
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Lemma 3. Let H be a cluster of graphs with anchor H, such that ⋃H is cellular. Suppose
that gen(H) < gen(⋃H), and that H has a degenerate face. Then there is a collection
H′ ⊆ H, that includes H and satisfies |H′| ≤ 3, such that gen

(
H
)
< gen

(⋃H′).
We now state the second key lemma. Informally speaking, this says that “if all the faces

of the anchor are non-degenerate, then at most two graphs of the cluster need to be added
to the anchor, so that the resulting graph either (i) has greater genus than the anchor; or
(ii) has a degenerate face”. Formally:

Lemma 4. Let H be a cluster of graphs with anchor H, such that ⋃H is cellular. Suppose
that gen(H) < gen(⋃H), and that every face of H is non-degenerate. Then there is a
collection H′′ ⊆ H, that includes H and satisfies |H′′| ≤ 3, such that either (i) gen(H) <
gen(⋃H′′); or (ii) ⋃H′′ has a degenerate face.

Most of the rest of this section (and chapter) is devoted to proving these lemmas. We
close this section by showing that they imply Theorem 2.

Proof of Theorem 2, assuming Lemmas 3 and 4. First we show that if Theorem 2 holds when⋃H is cellular, then it always holds. Suppose that I is a cluster of graphs with anchor I,
where gen(I) < gen(⋃ I), and ⋃ I is not cellular. Every embedded graph is isomorphic to a
cellularly embedded graph, and in particular there exists a cluster of graphs H such that ⋃H
is cellular, and an isomorphism φ : ⋃ I → ⋃H that maps each element of I to an element
of H. The image H of I under φ is then an anchor of H, and gen(H) < gen(⋃H).

Suppose that Theorem 2 holds for H. Thus there is an H ⊆ H, with H ∈ H and |H| ≤ 5,
such that gen(H) < gen(⋃H). Then the collection I := {φ−1(K) | K ∈ H} contains I,
satisfies |I| ≤ 5, and gen(I) < gen(⋃ I). That is, Theorem 2 also holds for I. Therefore, as
claimed, it suffices to prove the theorem under the assumption that ⋃H is cellular.

Thus we let H = {H,H1, . . . , Hn} be a cluster of graphs with anchor H, such that
gen(H) < gen(⋃H), and ⋃H is cellular. If H has a degenerate face, then Theorem 2 follows
immediately from Lemma 3. Thus we suppose that all the faces of H are non-degenerate,
and apply Lemma 4. Thus there exist (not necessarily distinct) graphs Hi, Hj ∈ H \ {H}
such that for the embedded graph that is the union H ∪ Hi ∪ Hj either (i) gen(H ∪ Hi ∪
Hj) > gen(H); or (ii) H ∪ Hi ∪ Hj has a degenerate face. In the first case we are done
by letting H := {H,Hi, Hj}. Thus we assume that (ii) holds, and (i) does not, that is,
gen(H ∪Hi ∪Hj) = gen(H).

Since gen(H) < gen(⋃H), it then follows that gen(H ∪ Hi ∪ Hj) < gen(⋃H), and so
J := {Hr ∈ H | r /∈ {i, j}} is not empty. The collection K := {H ∪Hi ∪Hj} ∪ J is then a
cluster of graphs with anchor H ∪Hi ∪Hj, since the anchor property of H in H is obviously
inherited to H ∪Hi ∪Hj in K.

Since ⋃K = ⋃H, it follows that gen(H ∪Hi ∪Hj) < gen(⋃K). Recall that the anchor
H∪Hi∪Hj of K has a degenerate face. Thus we can apply Lemma 3 to K, to obtain that there
exist (not necessarily different) graphs Hk, H` in J such that gen

(
(H∪Hi∪Hj)∪Hk∪H`

)
>

gen
(
H ∪ Hi ∪ Hj

)
. Therefore we have gen

(
H ∪ Hi ∪ Hj ∪ Hk ∪ H`

)
> gen(H), and so we

are done by setting H := {H,Hi, Hj, Hk, H`}.
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3.3 Proof of Lemma 3
Let H = {H,H1, . . . , Hn} be a cluster of graphs such that ⋃H is cellular, H is an anchor
of H, and H has a degenerate face F . Let W be the set of facial walks of H that bound
F . The degeneracy of F means that |W| ≥ 2. We refer the reader to Figure 3.2(a), where
we illustrate an anchor H in the double torus, and a face F that is homeomorphic to a disk
minus two points; thus the degeneracy of the face F in this example is exactly 1.

We let I denote the subgraph of ⋃H induced by the edges contained in the face F . Since⋃H is cellular and F is a degenerate face of H (in particular, F is not homeomorphic to an
open disk), it follows that I is not a null graph, that is, I has at least one edge.

To help comprehension, we say that the edges of Hi are of colour i, for i = 1, . . . , n. Thus
every edge of H\ {H} has (exactly) one colour; in particular, every edge in I is in H\ {H},
and so it has one colour. A subgraph of H is monochromatic if all its edges are of the same
colour.

The graph I can be decomposed as the edge-disjoint union of graphs G1, G2, . . . , Gm such
that, for k = 1, . . . ,m, Gk is a connected monochromatic subgraph of I, and it is maximal
with respect to these properties. Note that it may be that m > n; indeed, even though
each element of H is connected, the intersection of Hi with F may be disconnected for some
i ∈ {1, 2, . . . , n}.

(a)

H

F

(b)

Q

H

Figure 3.2: In (a) we depict the anchor H of a cluster of graphs H (the other graphs of H
are not shown). Here H has a face F bounded by two facial walks. Thus F has degeneracy
1. In (b) we illustrate a path Q contained in F , except for its endpoints, one of which lies
on W1, and the other one lies on W2.

The connectedness of each Hi ∈ H implies that Gk has at least one vertex in common
with some walk in W , for k = 1, . . . ,m. Indeed, suppose that some Gk ∈ {G1, . . . , Gm} has
no vertex in common with any walk in W ; thus Gk is completely (including its vertices)
contained in F . Let i be the colour of the edges in Gk. Since Hi is connected, it follows that
Hi must equal Gk, and in particular, that Hi does not intersect H. But this is impossible,
since H is an anchor of H. From this observation it follows that G := {H,G1, . . . , Gm} is a
cluster of graphs with anchor H.
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We claim that to prove the lemma it is enough to show that there exists a subcollection
G ′ of G, that includes H and satisfies |G ′| ≤ 3, such that gen(H) < gen(⋃G ′). For suppose
such a G ′ exists, then G ′ = {H,Gk, G`} for some (non-necessarily distinct) k, ` ∈ {1, . . . ,m}.
Now let i (respectively, j) be the colour of the edges in Gk (respectively, G`). Thus Gk is a
subgraph of Hi, and G` is a subgraph of Hj. Let H′ := {H,Hi, Hj}. Since Gk∪G` ⊆ Hi∪Hj,
then gen(⋃G ′) ≤ gen(⋃H′), and so gen(H) < gen(⋃G ′) implies that gen(H) < gen(⋃H′).
Thus the lemma follows, since H′ satisfies the required properties.

Thus we devote the rest of the proof to show that there exists a subcollection G ′ of G,
that includes H and satisfies |G ′| ≤ 3, such that gen(H) < gen(⋃G ′).

Let Gi ∈ G. If for a walk W ∈ W the graph Gi has a vertex in common with W , we say
that Gi attaches to W . We recall that each Gi ∈ G attaches to at least one walk in W .

We first deal with the case in which there is a Gk ∈ G that attaches to two distinct facial
walks W1,W2 ∈ W . In this case there is a path P from a vertex u ∈ W1 to a vertex v ∈ W2
that is contained in F except for its endpoints, and such that P is contained in Gk. We
claim that gen(H) < gen(H ∪ P ). Note that this settles the lemma in this case by setting
G ′ = {H,Gk}, as the fact that P is contained in Gk implies that gen(H ∪P ) ≤ gen(H ∪Gk).

To see that gen(H) < gen(H ∪ P ), we note that if q is the length (number of edges)
of P , then P ∪ H has q more edges, q − 1 more vertices, and one facial walk less than H
(P collapses W1 and W2 into a single facial walk). Thus an elementary counting gives that
gen(P ∪H) = gen(H) + 1.

In the remaining case, each Gi ∈ G attaches to exactly one facial walk in W . Let
W1,W2, . . . ,Wr be the elements of W . Thus if we say that Gi ∈ G is of type s if it attaches
to walk Ws, then each Gi ∈ G is of type s for exactly one s ∈ {1, 2, . . . , r}. We claim that
there is a Gi ∈ G of type 1 that intersects a graph of type s for some s ≥ 2. Seeking a
contradiction, suppose that this is not the case. Then there exists a simple closed curve α
contained in F , with the following properties:

(a) α does not intersect G1 ∪G2 ∪ · · · ∪Gm (and therefore does not intersect ⋃H); and
(b) F \ α has two components, one that contains all the edges of type 1 and one that

contains all the edges of type s for s ≥ 2.

Now α is a non-separating curve in the host surface of H, and since it does not intersect⋃H it follows that the face of ⋃H that contains α is not homeomorphic to an open disk,
contradicting the cellularity of ⋃H.

Hence there exist a Gk ∈ G of type 1, and a G` ∈ G of type s ≥ 2, such that Gk

and G` have at least one common vertex. It follows that there is a path Q contained in
Gk ∪G`, with one endpoint in W1 and the other endpoint in Ws, and that except for these
endpoints is contained in F . Let r denote the length of Q. Then H ∪ Q has r more edges,
r − 1 more vertices, and facial walk less than H (here Q collapses W1 and W2 into a single
facial walk). Again an elementary counting yields that gen(H) < gen(H ∪ Q), and so
gen(H) < gen(H ∪Gk∪G`). Thus in this case we are done by setting G ′ := {H,Gk, G`}.
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3.4 Proof of Lemma 4
The proof of Lemma 4 consists of two steps, which are stated as Claims A and B below. For
the proof of Claim B we assume the following statement on non-separating cycles in clusters
of graphs whose anchor consists of a single vertex. We recall that if D is a cycle in a graph
embedded in a surface Σ such that Σ \D is connected, then D is non-separating.

Proposition 5. Let G be a cluster of graphs, where the anchor G consists of a single vertex,
and ⋃G is cellularly embedded in Σg for some g ≥ 1. Then there is a subcollection G◦ ⊆(
G \ {G}

)
, with |G◦| ≤ 2, such that ⋃G◦ contains a non-separating cycle.

Deferring the proof of this proposition to Section 3.6, we now move on to reducing
Lemma 4 to Claims A and B mentioned above.

Throughout this section, H = {H,H1, . . . , Hn} is a cluster of graphs with anchor H as
in the statement of Lemma 4. Thus ⋃H is cellular, gen(H) < gen(⋃H), and every face of
H is non-degenerate. We let Σg be the host surface of H.

The assumption gen(H) < gen(⋃H) implies that H is not cellularly embedded in Σg.
Now any graph that is not cellularly embedded has a face that either is degenerate or has
positive genus. Since by assumption every face of H is non-degenerate, it follows that H
has a face F with positive genus (and degeneracy zero). That is, F is homeomorphic to a
compact surface of positive genus from which a single point has been removed. Let W be
the unique facial walk of H that bounds F .

The situation is illustrated in (a) of Figure 3.3. The anchor H is contained in the left
handle of the double torus, and it is easy to see that gen(H) = 1 (that is, H “fills the left
handle”). In this case F has genus 1, as it is homeomorphic to a torus minus one point.

Now suppose that P is a path that is contained in F except for its endpoints u and v,
which lie on W . We say that such a path is F -non-separating if there is a path R from u to
v, contained in W , such that R ∪ P is a non-separating cycle. An F -non-separating path is
illustrated in (b) of Figure 3.3.

Lemma 4 is an immediate consequence of the following two claims, whose proofs encom-
pass the rest of this section.

Claim A. Suppose that there exists a subcollection H◦ of H, with |H◦| ≤ 2, such that ⋃H0
contains one of the following:

(i) An F -non-separating path.

(ii) A non-separating cycle contained in F , except perhaps for a single vertex that lies on
W .

Then Lemma 4 holds by setting H′′ = {H} ∪ H◦.
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F

(a)

W

H

(b)

P

(c)

D

Q

(d)

D

Figure 3.3: In (a) we depict the anchor H of a cluster of graphs H (the other graphs of H
are not shown), where H has a face F with degeneracy zero and genus 1. The (unique) facial
walk of H that bounds F is W . In (b), (c), and (d) we show the three structures involved in
Claim A. In (b) we show an F -non-separating path. In (c) we have a non-separating cycle
D completely contained in F ; in particular, D is disjoint from W . (The path Q also shown
in (c), with one endpoint in W and one endpoint in D, is used in the proof of Claim A).
Finally, in (d) we show a non-separating cycle D that is contained in F , except for a single
vertex that lies on W .

Possibility (i) in the statement of Claim A is illustrated in (b) of Figure 3.3. The two
possible situations in (ii) (a non-separating cycle completely contained in F , and a non-
separating cycle contained in F except for a single vertex that lies on W ) are illustrated in
(c) and (d) of Figure 3.3, respectively. (The path Q in (c) is used in the proof of Claim A).

Claim B. There exists a subcollection H◦ of H with the properties stated in Claim A.

3.4.1 Proof of Claim A.
Proof. Consider the subcollection H◦ whose existence is assumed in Claim A. Thus H◦
consists either of one or two elements in H. To simplify the discussion, it is valid to say that
H◦ = {Hk, H`}, where Hk and H` are not necessarily distinct elements of H.

Our first step is to produce, from one of the structures in the statement of Claim A
(an F -non-separating path or a non-separating cycle) a subgraph L of Hk ∪H` with certain
properties. If there is an F -non-separating path P , then we let L := P . If there is a non-
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separating cycle D contained in F , except for a single vertex that lies on W , then we let
L := D. In the alternative, there is a non-separating cycle D completely contained in F .
In this case, since Hk and H` are connected, and each of them has at least one vertex in
common with H, it follows that there is a path Q contained in Hk∪H`, with one endpoint in
D and the other endpoint in W , that is otherwise disjoint from D ∪W . (See Figure 3.3(c)).
Thus Q is contained in F , except for its endpoint in W . In this case we let L := D ∪Q.

We note that in every case L satisfies the following properties:

1. L is a subgraph of Hk ∪H`.

2. L is contained in F , except for some vertices (either one or two) that lie on W .

3. H ∪ L has a degenerate face. (This is the important structural property).

Properties 1 and 2 follow immediately from the construction of L. To see that Property 3
holds, note that F \ L is a face FL of H ∪ L. It is immediately verified that (regardless of
whether L is a path, or a cycle, or a cycle plus a path) FL bounds exactly two facial walks
of H ∪ L, and thus it is degenerate.

The argument to finish the proof of Claim A is heavily based on the following remark. In
what follows, if e is an edge of a connected graph G that is incident with a degree 1 vertex,
then we use G − e to denote the graph that results by removing from G both e and this
degree 1 vertex. If e is not incident with any degree 1 vertex, then G− e is simply the graph
that results by removing e from G.

Remark. Let G be a connected embedded graph, and let e be an edge of G such that
G− e is also connected. If G− e has a degenerate face, then either (a) gen(G) > gen(G− e);
or (b) G has a degenerate face.

Proof of the Remark. Let G and e be as in the statement of the Remark, and let J be a
degenerate face of G− e. If e is not inside the face J , then J is also a face of G, with facial
walks a subdivision of the facial walks in G− e; thus in this case G has a degenerate face.

In the alternative, e is inside J . In this case J (which is a face of G− e) is not a face of
G, but is contained in at most two faces of G. Now e must have at least one endpoint u in
a facial walk U of J , and the other endpoint v of e is either inside J or lies on a facial walk
of J . If v is inside J then it is a degree one vertex of G, and J − e is a face of G with the
same number of facial walks as J ; in particular, in this case G has a degenerate face, namely
J − e. Thus it only remains to analyse the case in which v lies on a facial walk U ′ of J .

If U and U ′ are distinct facial walks, then G has one more edge and one facial walk less
than G−e (the facial walks U,U ′ get collapsed into a single facial walk by the addition of e).
Thus in this case an elementary counting argument shows that gen(G) = gen(G− e) + 1 >
gen(G− e), and so we are done.

Thus we are left with the case in which U and U ′ are the same facial walk. We note that
then U together with e induces two facial walks U1, U2 in G.
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Assume first that J − e is connected. In this case J − e is a face of G, which is bounded
by (at least) the facial walks U1 and U2; in particular, G has a degenerate face, and so we
are done. Finally, suppose that J − e is disconnected. Since J is connected (it is a face of
G− e) it follows that J − e has exactly two components J1, J2, which are faces of G. One of
these faces is bounded by U1, and the other is bounded by U2. Without loss of generality,
U1 bounds J1 and U2 bounds J2. Now since J is degenerate, it follows that there is a facial
walk U ′′, distinct from U , that also bounds J and has no vertex in comun with e. Then U ′′
must also bound either J1 or J2. In the former case, J1 is degenerate, and in the latter case
J2 is degenerate.

We are finally ready to finish the proof of Claim A, by showing that Lemma 4 follows by
letting H′′ := H◦ = {H,Hk, H`}. That is, we will show that either gen(H) < gen(H ∪Hk ∪
H`), or H ∪Hk ∪H` has a degenerate face.

The connectedness of Hk and H`, and the fact that each of these graphs has at least one
vertex in common with H, implies that there is a sequence L0, L1, . . . , Lm of subgraphs of
H ∪Hk ∪H` such that the following hold: (i) L0 = H ∪ L; (ii) Lm = H ∪Hk ∪H`; (iii) for
i = 0, 1, . . . ,m−1 there is an edge ei of Hk∪H` such that Li = Li+1−ei. Roughly speaking,
starting from H ∪Hk ∪H` we can obtain H ∪ L by successively removing edges (if an edge
is incident with a degree one vertex, we also remove that vertex, as we mentioned before the
Remark above), so that at every step we have a connected graph.

If Lm = H ∪ Hk ∪ H` has a degenerate face then we are done (as then (ii) holds in
the statement of Lemma 4). Thus we assume that Lm has no degenerate face. Let j be
the smallest integer in {0, 1, . . . ,m} such that Lj has no degenerate face. By assumption
L0 has a degenerate face, so j ≥ 1. Thus Lj−1 does have a degenerate face, and since
Lj−1 = Lj − ej−1, we can apply the Remark above, obtaining that gen(Lj) > gen(Lj−1).
Since H ⊆ H ∪ L ⊆ Lj−1 and Lj ⊆ H ∪ Hk ∪ H`, it follows that gen(H) ≤ gen(Lj−1) <
gen(Lj) ≤ gen(H ∪Hk ∪H`), and so (i) in the statement of Lemma 4 holds.

3.4.2 Proof of Claim B
Proof. Since ⋃H is cellularly embedded, and F is a face of H with positive genus, it follows
that there exist edges of H1 ∪ H2 ∪ · · ·Hn contained in F . By relabelling if necessary, we
can assume that for some m ≤ n, H1, H2, . . . , Hm are the graphs in H\ {H} that contain at
least one edge in F .

Now for each Hi with i ∈ {1, 2, . . . ,m}, let Ii be the subgraph of Hi induced by the
edges of Hi inside the face F . Thus {I1, . . . , Im} is a collection whose union is contained in
F , except for the attachment vertices, that is, those vertices in the graphs Ii that are in W
(and thus in H). Note that each Ii ∈ {I1, . . . , Im} has at least one vertex of attachment:
this follows since each Hi ∈ H is connected, and has at least one vertex in common with
the anchor H: if some Ii had no vertices of attachment, then it (and hence Hi) would not
intersect H. For convenience, although not all elements in the cluster necessarily have an
edge inside F , moreover Ii is note necessarily connected, we choose to keep the labels of the
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vertices and edges in I1 ∪ I2 ∪ . . . ∪ Im as they are inherited from H1 ∪H2 ∪ · · ·Hm, so that
Ii ⊆ Hi.

Note that even though each Ii has at least one vertex in common with H, the collection
{H, I1, I2, . . . , Im} may not be a cluster of graphs, since the graphs Ii are not necessarily
connected. However, this is not relevant to our purposes.

We now collapseW to a point u, obtaining the compact surface Σ := F ∪{u} (we discard
Σg\F ). Thus Σ has the same genus as F , and I1∪I2∪· · ·∪Im naturally induces an embedded
graph K in Σ: every edge and vertex of I1∪I2∪· · ·∪Im is maintained, with the exception of
the attachment vertices, which get identified to the single vertex u. For each i = 1, 2, . . . ,m,
we let Ji be the subgraph of K naturally induced by Ii.

By letting J be the graph that consists solely of vertex u, the collection J := {J, J1, J2 . . . ,
Jm} is then a cluster of graphs in Σh, as the property that each Ii had at least one attachment
vertex implies that each Ji contains u, that is, intersects the anchor J . With the exception
of u, each vertex or edge of Ji is inherited from a vertex or edge of Ii (and hence of Hi), and
we choose to maintain their respective labels.

The cellularity of ⋃H implies that ⋃J is also cellularly embedded, and so we may apply
Proposition 5 to J , to obtain that there exists a subcollection J◦ of J , with |J◦| ≤ 2, such
that ⋃J◦ contains a non-separating cycle. Thus there exist (not necessarily distinct) integers
k, ` such that Jk ∪ J` contains a non-separating cycle D.

To finish the proof it suffices to look at the subgraph D′ of ⋃H (back in Σg) induced by
the edges of D. Note that D′ is contained in Hk ∪H`. If D contains u, then D′ is either an
F -non-separating path or a non-separating cycle that has a single vertex in common withW .
If D does not contain u, then D′ is a cycle completely contained in F . Thus the subcollection
H◦ := {Hk, H`} of H has the required properties.

3.5 Towards the proof of Proposition 5: short-circuiting
non-separating cycles

In the context of the statement of Proposition 5 we have a cluster of graphs G = {G,G1, . . . ,
Gn}, cellularly embedded in some surface Σg with g ≥ 1. The graph G is an anchor of the
cluster, and it consists of a single vertex a. Since G is edgeless, it follows that each edge e
of ⋃G belongs to Gi for exactly one i ∈ {1, . . . , n}. To help comprehension, we say that e is
of colour i. Thus each edge of ⋃G has exactly one colour. A subgraph of ⋃G is k-coloured
if the number of distinct colours in its edge set is exactly k.

For brevity, we will refer to a non-separating cycle simply as an ns-cycle. Under this
terminology, Proposition 5 claims the existence of a 1- or 2-coloured ns-cycle in ⋃G.

The existence of an ns-cycle follows since ⋃G is cellularly embedded in Σg for some g ≥ 1
(see [41, Lemma 11]). If such a cycle is k-colored for some k ≥ 3, we need to find a way to
“short-circuit” it to find an ns-cycle with fewer colours. (This short-circuiting idea is also
central for the proof of the main theorem in [41]). The proof of Proposition 5 consists of
iteratively applying this short-circuiting process, until we obtain a 1- or 2-coloured ns-cycle.
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The central idea behind the short-circuiting process is that the set of ns-cycles in an
embedded graph satisfies Thomassen’s 3-path-condition [47, Proposition 3.5]: if R, S, T are
pairwise internally disjoint paths with the same endpoints, and the cycle R ∪ S is non-
separating, then one of the cycles R ∪ T and S ∪ T is non-separating. Thus if we start with
an ns-cycle R∪S and a suitable path T internally disjoint from R∪S (where both endpoints
of T are in R ∪ S), we can apply the 3-path-condition to find an ns-cycle with fewer colours
than R ∪ S.

In the standard graph theory terminology, a trail is a walk in which no edge appears more
than once. If the startpoint u and the endpoint v of a trail T are distinct, then T is a uv-trail.
A circuit is a trail whose startpoint and endpoint are the same. If W = v0e1v1 . . . envn is a
walk on a graph, then W−1 is the reverse walk of W , namely vnenvn−1 . . . v1e1v0. If W ′ is
a walk vnen+1vn+1, . . . , emvm (the endpoint of W is the startpoint of W ′), then WW ′ is the
concatenation v0e1v1 . . . envnen+1vn+1 . . . emvm of W and W ′.

If T is not internally disjoint from R ∪ S (or even if T is not a path, but a trail, and/or
R ∪ S is not a cycle but a circuit), we cannot apply the 3-path-condition. Thus we need a
version of the 3-path-condition that applies to trails (instead of paths) and circuits (instead
of cycles). As we shall see shortly, a property totally analogous to the 3-path-condition holds
in the context of trails and circuits, by considering in this more general context (instead of
non-separating cycles) the collection of non-null-homologous circuits in an embedded graph.
Before moving on to this generalized version of the 3-path-condition, we recall the concepts
of a trail and a circuit.

We adopt the (usual) point of view that a circuit is regarded as a cyclic sequence of
vertices and edges, so that if C = v0e1v1 . . . env0 is a circuit, then C is identical to the circuit
viei+1vi+1 . . . v0e1 . . . ei−1vi, for all i = 1, . . . , n − 1. If C = v0e1v1 . . . eiviei+1 . . . env0 is a
circuit such that v0 = vi for some i 6= 0, then v0e1v1 . . . vi = v0 is a subcircuit of C.

We extend the notion of an ns-cycle to circuits, by means of simplicial homology over Z2.
From this viewpoint, a cycle is an ns-cycle if (and only if) it is non-null-homologous. Thus
we say that a circuit is an ns-circuit if it is non-null-homologous. The following trivial obser-
vation from elementary homology theory will be repeatedly invoked in the short-circuiting
iterative process in the proof of Proposition 5. Nonetheless we only invoke these results, we
refer the interested reader to [25] for further information on this subject.

Remark. Every ns-circuit contains an ns-cycle as a subcircuit.

We are now ready to state the extension (to trails and circuits) of the fact that the set
of ns-cycles in an embedded graph satisfies Thomassen’s 3-path-condition.

Observation 6 (3-trail condition for ns-circuits). Let T1, T2, T3 be edge-disjoint trails in an
embedded graph, with the same startpoint and the same endpoint. If T1T

−1
2 is an ns-circuit,

then at least one of T1T
−1
3 and T3T

−1
2 is also an ns-circuit.

Some variants of this observation are usually stated without proof (see for instance [9,
Section 3.1]), as it is a trivial exercise in homology theory. We give the proof for completeness.
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Proof. Regarding the circuits as 1-chains, we have that T1T
−1
3 + T3T

−1
2 = T1T

−1
2 , since T3

and T−1
3 cancel each other. Since by assumption T1T

−1
2 is non-null-homologous, it follows

that at least one of T1T
−1
3 and T3T

−1
2 must also be non-null-homologous.

With Observation 6 in our toolkit, we are finally ready to prove Proposition 5.

3.6 Proof of Proposition 5
Proof. Let G1, . . . , Gn be the elements in G \ {G}. As we mentioned in the previous section,
to help comprehension we say that the edges of Gi are of colour i, for i = 1, 2, . . . , n. Since
G consists of a single vertex a, and G1, G2, . . . , Gn are pairwise edge-disjoint, it follows that
each edge of ⋃G has exactly one colour. If T is a trail in ⋃G with all the edges of the same
colour i for some i ∈ {1, 2, . . . , n}, then T is monochromatic, and we say that i is the colour
of T .

If C is a circuit in ⋃G, then C can be written as a concatenation T0T1 . . . Tr−1 of maximal
monochromatic trails. That is, for i = 0, 1, . . . , r − 1, Ti is monochromatic, and the colour
of Ti is distinct from the colour of Ti+1 (indices are read modulo r, and so Tr−1 and T0
are of different colours). We remark that Ti and Tj may be of the same colour for some
i 6= j, as long as j /∈ {i− 1, i+ 1}. This decomposition of C as a concatenation of maximal
monochromatic trails is unique, up to a cyclic permutation of the trails. This uniqueness
allows us to call T0T1 . . . Tr−1 the canonical decomposition of C; we call r the rank of the
circuit C.

To prove Proposition 5 we show that there exists an ns-cycle of rank at most 2 (see
Statement (4) below), and therefore a subset of {G1, . . . , Gn} of size at most 2, whose union
contains an ns-cycle, as required in the statement of the proposition.

Thus the final goal is to prove Statement (4) below. To help comprehension, we break
the proof into several steps. As we will see, showing the existence of an ns-cycle of rank at
most 3 is fairly easy (see Statement (2) below). Most of the work is involved with bringing
the rank down to at most 2.

(1) If there exists an ns-circuit of rank r, then there exists an ns-cycle of rank at most r.

Proof. This follows immediately from the definition of an ns-circuit. Indeed, if C is an
ns-circuit of rank r, then it contains an ns-cycle D as a subcircuit (see Remark before
Observation 6); it is readily checked that the rank of D is at most r. It is worth noting that
the property that D is a subcircuit of C (and not just an arbitrary ns-cycle contained in C)
is essential in order to guarantee that the rank of D is at most the rank of C.

(2) There exists an ns-cycle of rank at most 3.

Proof. The existence of an ns-cycle in ⋃G follows from [41, Lemma 11], since ⋃G is cellularly
embedded in a surface of positive genus. In order to prove (2) it suffices to show that if D
is an ns-cycle with canonical decomposition P0P1 . . . Pr−1, where r ≥ 4, then there exists an
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ns-cycle whose rank is smaller than r; an iterative application of this fact, starting with an
arbitrary ns-cycle, yields the existence of an ns-cycle with rank at most 3.

Suppose first that there exists an i ∈ {1, . . . , n} such that there are at least two paths
in {P0, P1, . . . , Pr−1} that are of colour i (note that since D is a cycle, the elements in its
canonical decomposition P0P1 . . . Pr−1 are paths). Since Gi is connected, it follows that there
exist distinct Pj, Pk in the decomposition, both of colour i, and a path R of colour i whose
startpoint u is in Pj and whose endpoint v is in Pk, and such that R does not contain any
edge of D. Now let P,Q be the two uv-paths contained in D (thus D = PQ−1). Then P,Q,
and R are pairwise edge-disjoint uv-paths. It is readily verified that since R is of colour i,
then the rank of each of PR−1 and RQ−1 is strictly smaller than r. Now since D = PQ−1 is
an ns-cycle, and in particular an ns-circuit, it follows from Observation 6 that one of PR−1

and RQ−1 is also an ns-circuit. Thus, one of these is an ns-circuit (and by (1), an ns-cycle)
whose rank is smaller than r.

Suppose finally that all the paths P0, P1, . . . , Pr−1 are of distinct colours. By relabelling
if necessary, we may assume that P0 is of colour 0, and P2 is of colour 2. Since G0 and G2
are connected and have at least one vertex in common (namely the vertex a in the anchor
G), it follows that there exists a path U with the following properties:

(i) one endpoint v0 of U is in P0, and its other endpoint v2 is in P2;

(ii) U is the concatenation of a path of colour 0 with a path of colour 2 (one of these two
paths may consist of a single vertex); and

(iii) U is edge-disjoint from D.

Now let S, T be the v0v2-paths contained in D. It is easily seen that the rank of both SU−1

and UT−1 is smaller than r. Now since D = ST−1 is an ns-cycle (and in particular an
ns-circuit), it follows from Observation 6 that one of SU−1 and UT−1 is also an ns-circuit.
Thus there exists an ns-circuit (and by (1), an ns-cycle) whose rank is smaller than r.

The following statement gets us to the final goal (the existence of an ns-cycle with rank
at most 2) in a particular case. Since a reduction to this case appears several times in the
proof (4), it is convenient to deal with it before moving on to (4).
(3) Let C be an ns-circuit with canonical decomposition T1T2T3, where the colour of Ti is i,
for i = 1, 2, 3. Suppose that T2 does not contain the startpoint v of T1 (which is the endpoint
of T3), but there is some edge of colour 2 incident with v. Then there is an ns-cycle with
rank at most 2.

Proof. We start by noting that the connectedness of G2 and the assumption that there is
an edge of colour 2 incident with v, imply that there is a path U of colour 2, that starts
in v and ends in v2 in T2, which is edge-disjoint from C. Now let S be the subtrail of C
obtained by starting at v, traversing T1 completely, and then continuing along T2 until we
reach v2 (it might be that v2 is the endpoint of T1, in which case S does not contain edges
of T2, but this is irrelevant). Now let T be the trail from v to v2 such that C = ST−1; thus
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T−1 is obtained by continuing the traversal of C after we reached v2, and in particular T3 is
a subtrail of T−1.

The circuit SU−1 is the concatenation of T1 (which has colour 1) with a trail of colour
2, and the circuit UT−1 is the concatenation of a trail of colour 2 with T3 (which has colour
3). Thus both circuits have rank exactly 2. Since ST−1 = C is an ns-circuit, it follows by
Observation 6 that at least one of SU−1 and UT−1 is an ns-circuit. Thus there exists an
ns-circuit of rank 2, and by (1) it follows that there is an ns-cycle of rank at most 2.

(4) There exists an ns-cycle with rank at most 2.

Proof. By (2), there exists an ns-cycle D with rank at most 3. If the rank of D is 1 or 2 we
are obviously done, so we assume that the rank of D is exactly 3. Thus D has a canonical
decomposition P1P2P3, where Pi is a path for i = 1, 2, 3. By relabelling the subgraphs
G1, G2, . . . , Gn if necessary, we may assume that Pi is in Gi (that is, Pi has colour i), for
i = 1, 2, 3. We recall that G1, G2, and G3 have at least one common vertex, namely the
vertex a in the anchor G.

Suppose first that a is in D. By relabelling if necessary, we may assume that a is in P3,
and possibly also in P1 but not in P2. If a is the endpoint of P3 (and thus the startpoint of
P1) then we are done by applying (3) with Ti := Pi for i = 1, 2, 3. So we may assume that a
is an internal vertex of P3. Since G1 is connected, there is a path R of colour 1 from a to a
vertex v1 in P1, such that R has no edges in common with D. Let P,Q be the two av1-paths
contained in D, labelled so that every edge of P is of colour 1 or 3 (hence Q contains P2). It
is easily checked that PR−1 has rank 2, and RQ−1 has rank at most 3. Now PQ−1 = D is
an ns-cycle (in particular an ns-circuit), and so by Observation 6 one of PR−1 and RQ−1 is
an ns-circuit. If PR−1 is an ns-circuit we are done, since it has rank 2. Thus we may assume
that RQ−1 is an ns-circuit, and that its rank is exactly 3. Then RQ−1 is the concatenation
of three trails: (i) a trail T1 of colour 1, which is the concatenation of R with the subpath
of P1 from v1 to the endpoint of P1 (this last subpath may consists of the single vertex v1);
(ii) the trail T2 = P2, of colour 2; and (iii) the subpath of P3 that starts at the startpoint of
P3 and ends at a; this last trail is of colour 3, and cannot consist of a single vertex, since a
is an interior vertex of P3. Since T1, T2, T3 satisfy the conditions in (3), it follows that there
exists an ns-cycle with rank at most 2, as required.

Finally suppose that a is not in D. We may assume that no vertex in D is in G1∩G2∩G3
(a vertex with this property need not be unique), for if such a vertex exists, we let it play
the role of a and we are done by the discussion above.

Since each of G1, G2 and G3 is connected, it follows that for i = 1, 2, 3 there exists a
path Qi of colour i with startpoint vi in Pi and endpoint a, where Qi is edge-disjoint from
D. Note that v1, v2, v3 cannot all be the same vertex, since D = P1P2P3 is a cycle. By
relabelling if necessary, we may assume that v1 6= v3. Let U := Q3Q

−1
1 , and let S, T be the

two paths from v3 to v1 contained in D, where every edge of S is of colour 1 or 3 (thus T
contains P2). We note that the circuit SU−1 has rank 2 (its canonical decomposition consists
of a trail of colour 1 followed by a trail of colour 3), and U−1T has rank 3 (its canonical
decomposition consists of a trail T1 of colour 1, followed by T2 = P−1

2 of colour 2, followed by
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a trail T3 of colour 3). Since ST−1 = D is an ns-cycle (and thus an ns-circuit) it follows from
Observation 6 that at least one of SU−1 and UT−1 is an ns-circuit. In the former case we are
done, since SU−1 is then an ns-circuit of rank 2, and by (1) there exists an ns-cycle of rank
at most 2. In the latter case, UT−1 is an ns-circuit of rank 3 whose canonical decomposition
T1T2T3 described above satisfies the conditions in (3). Therefore also in this case there exists
an ns-circuit (and by (1), an ns-cycle) of rank at most 2.

As we observed before (1), Statement (4) completes the proof of the lemma.
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Chapter 4

Concluding remarks

It is natural to ask if the condition that there is a pseudocircle that intersects all other
pseudocircles in the collection is absolutely necessary. To answer this question we note that
it is necessary to require some sort of condition along these lines. Indeed, as observed by
Ortner in [41, Figure 16], there exist arbitrarily large collections of pseudocircles (whose
union is connected) that cannot be embedded into a sphere, and yet the removal of any
pseudocircle leaves an arrangement that can be embedded into a sphere.

On the other hand, in order to have some version of Theorem 1 it is not strictly necessary
to have a single pseudocircle intersecting all the others; our techniques and arguments are
readily adapted under the assumption that there is a subcollection of bounded size that
gets intersected by all other pseudocircles. More precisely, if we define an m-arrangement of
pseudocircles as a collection in which there is a subcollection of size (at most) m such that
every pseudocircle intersects at least one pseudocircle in this subcollection, then it is easy
to show that the corresponding version of Theorem 1 reads as follows.

Theorem 7. An m-arrangement of pseudocircles is embeddable into Σg if and only if all of
its subarrangements of size at most 4g + (m+ 5) are embeddable into Σg.

We have proved that a strong arrangement of pseudocircles is embeddable into Σg if and
only if all of its subarrangements of size at most 4g + 4 are embeddable into Σg. As Ortner
showed in [41, Figure 3], there are strong arrangements of size 4 that are not embeddable
into a sphere, and yet all its subarrangements are embeddable into a sphere; thus this result
cannot be improved for g = 0. Similarly, for arrangements of pseudocircles (with the more
general definition we used throughout this work) the size bound 4g+5 cannot be improved for
the case g = 0. Indeed, the toroidal arrangement shown in Figure 4.1 has 5 pseudocircles,
it cannot be embedded into the sphere, and yet all its subarrangements of size 4 can be
embedded into the sphere.

Working under the framework of clusters of graphs, one can prove similar results to
Theorem 1 for collections of other objects, such as arcs, which are homeomorphic images
of the interval [0, 1]. Arrangements of arcs (and, in general, arrangements of curves) are
investigated in [20] and [21]. (A different notion of an arrangement of arcs is used, for
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Figure 4.1: An arrangement of 5 pseudocircles in the torus (given in its polygonal represen-
tation). This arrangement is not embeddable into the sphere, but every subarrangement of
size 4 is embeddable into the sphere.

instance, in [37]). In order to obtain a result along the lines of Theorem 1, some anchorness
condition for an arrangement of arcs is required (a discussion analogous to the one given at
the beginning of this section applies to these objects as well). If we consider an arrangement
of arcs as a collection of arcs that pairwise intersect a finite number of times, and in which
there is an arc that intersects all the other arcs in the collection, then the following analogue
of Theorem 1 is a consequence of our Main Theorem.

Theorem 8. An arrangement of arcs is embeddable into Σg if and only if all of its subar-
rangements of size at most 4g + 5 are embeddable into Σg.

We finally note that in [41], Ortner wrote that one could conjecture that embeddability
(of a strong arrangement) into the surface Σg of genus g holds if and only if all (4 + g)-
subarrangements are embeddable into Σg. We have proved that, for strong arrangements,
embeddability into Σg holds if and only if all (4 + 4g)-subarrangements are embeddable into
Σ. The question of whether or not this can be improved to 4 + g, as conjectured in [41],
remains open.
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Chapter 5

Knots, shadows, and diagrams

We start the second part of this thesis with a review of some basic notions in knot theory,
such as knots, projections, shadows, and diagrams. For a comprehensive introduction to
knot theory we refer the reader to the standard reference [3].

5.1 Knots
A knot is a simple closed curve in R3, that is, the image of an injective continuous mapping
f : S1 → R3. The usual way to visualize a knot K is by projecting K onto a plane.

(a) (b) (c)

Figure 5.1: In (a) we illustrate a projection of the trefoil knot; this is a (non-simple) closed
curve, with three crossing points. In (b) we turn the closed curve into a combinatorial-
topological object (a 4-regular graph) by regarding the crossing points as vertices; the result
is a shadow. In (c) we have the familiar diagram of the trefoil knot, that is, a projection
with over/under crossing information provided. The over/under crossing information in a
diagram suffices to recreate the knot, in the sense that from this we can obtain a knot that
is equivalent to the original knot.

As an example, in Figure 5.1(a) we illustrate a projection of the trefoil knot. For some
purposes it is useful to regard a projection as a topological-combinatorial object, that is, as
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a plane graph. Such an object is a shadow of the knot. In Figure 5.1(b) we illustrate the
shadow corresponding to the projection in Figure 5.1(a). These are essentially the same 2-
dimensional object, but in the shadow we emphasize that the crossing points of the projection
are regarded as vertices of a plane graph.

Some essential information about a knot (a 3-dimensional object) is inevitably lost if all
we have available is a projection (or, for that matter, a shadow) of the knot. In order to
recreate the knot, one provides the over/under crossing information at each crossing point
of the projection; the resulting object is a knot diagram. In Figure 5.1(c) we show a diagram
of the trefoil knot.

This informal description of shadows and diagrams is enough for many discussions. How-
ever, for our purposes we need to go a bit further, and introduce and discuss several concepts
related to shadows and diagrams.

5.2 Projections

Let P be a plane in R3. The orthogonal projection πP : R3 → P onto P is the mapping
that takes each point q in R3 to the point p in P such that the line orthogonal to P that
passes through p contains q. If K is a knot, then the orthogonal projection (or simply the
projection) of K onto P is πP (K).

The most useful and natural projections have the properties that (i) no three points
on the knot project to the same point; and (ii) the number of pairs of points in the knot
that project to the same point is finite. Formally, for these projections we have that (i) for
every p ∈ P , |(πP )−1(p)| is either 0, 1, or 2; and (ii) the number of points in P such that
|π−1
p (p)| = 2 is finite. Such a projection is called regular. For instance, the projection on

Figure 5.1 (a) is regular.
There exist knots that do not have a regular projection (such as wild knots). However

as stated in [14], the main invariants of knot type, such as knot polynomials are not always
defined for wild knots but for tame knots (C1-knots) and as they also proved, for every tame
knot K there exists an homeomorphism of R3 onto itself which maps K onto a polygonal
knot K ′ which has a regular projection. This allows us to adopt the usual point of view
of considering only knots that admit regular projections. From now on, we work under the
usual assumption that all knot projections under consideration are regular.

A knot projection is thus a closed curve, that is, the image of a continuous mapping
g : S1 → R2 (we assume without loss of generality that the plane under consideration is
the xy-plane). If a projection of a knot K is a simple closed curve then K is obviously the
unknot. If the projection is not a simple closed curve, then (by the regularity assumption)
there is a finite number of points p in the plane such that |g−1(p)| = 2. These are the crossing
points of the projection.
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5.3 Shadows
As we mentioned above, it is often convenient to regard a projection as a topological-
combinatorial object, namely as a plane graph. For this, we simply regard the crossing
points as vertices. The result is then a 4-regular plane graph, which is a shadow of the knot
under consideration. For convenience, we admit the possibility that a shadow is a vertex-
less graph, which is what we obtain if the projection is a simple closed curve (and so the
corresponding knot is trivial). We refer to a vertex-less shadow as a trivial shadow.

Thus every shadow is a 4-regular plane graph, but not every 4-regular plane graph is a
shadow of a knot. We now describe the combinatorial characterization of which 4-regular
plane graphs do arise as knot shadows.

If G is a plane graph (that is, a graph with a given planar embedding), then the rotation
at a vertex v of G is a cyclic permutation of the edges incident with v; this cyclic rotation
records the clockwise order in which these edges leave v in the embedding. We refer the
reader to Figure 5.2.

v2v1

v3

e2

e1

e5 e4

e6 e3

Figure 5.2: The rotation of vertex v1 in this plane graph is the cyclic permutation e1e2e5e6;
the rotation of v2 is the cyclic rotation e2e1e3e4; and the rotation of v3 is e4e3e6e5.

We recall that a walk in a graph G is a sequence v0e1v1 . . . envn, where vi is a vertex of G
for i = 0, 1, . . . , n, and for j = 1, 2, . . . , n, ej is an edge of G whose endpoints are vj−1 are vj
(if ej is a loop-edge, then its incident vertex is vj−1 = vj). A walk is closed if its initial and
final vertex are the same. A walk is Eulerian if it traverses each edge of the graph exactly
once.

A straight-ahead walk in a plane graph G is a walk that always passes from an edge
to the opposite edge in the rotation at each vertex. That is, if a rotation at vertex v is
e1e2e3e4, then in a straight-ahead walk W that goes from e1 towards v, the next edge in the
walk (if any) is necessarily e3; if W goes from e2 towards v, then the next edge in the walk
(if any) is necessarily e4, etc. If W is a straight-ahead Eulerian closed walk of G, then v
appears exactly twice in W : in one occurrence either e1ve3 or e3ve1 will appear, and in the
other occurrence one of e2ve4 and e4ve2 will appear. In the example of Figure 5.2, the walk
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v1e1v2e4v3e6v1e2v2e3v3e5v1 is a straight-ahead closed Eulerian walk. We note that if G has
an Eulerian straight-ahead closed walk, then for every vertex v of G there is an Eulerian
straight-ahead closed walk that has v as its startpoint (and as its endpoint).

The characterization of when a 4-regular plane graph is a shadow of a knot is totally
straightforward, but it is so important that it is worth highlighting:

Remark. Let G be a 4-regular plane graph. Then G is a shadow of a knot if and only if G
has a straight-ahead Eulerian closed walk.

We also recall that if C is a connected subgraph of a graph G, and every vertex of C has
degree two (in C), then C is a cycle of G. For our purposes, a vertex-less graph (which, we
recall, consists of a single edge, homeomorphic to a simple closed curve) will be considered
a cycle.

A straight-ahead cycle in a shadow S is a cycle C of S with the following property. There
exists a vertex c (the root) of C such that there is a straight-ahead closed walk in S that
starts (and ends) in c, and traverses the edges of C, and no other edges of S. In Figure 5.3
we illustrate two straight-ahead cycles in a shadow of the trefoil knot.

c

(a)

c

(b)

c

(c)

Figure 5.3: In (a) we depict a shadow of the trefoil knot. There are two straight-ahead cycles
whose root is the vertex c. These cycles are highlighted in parts (b) and (c) of this figure.

We note that in the case of Figure 5.3 there is a vertex c with the property that there
are two distinct straight-ahead cycles that have c as their root. (Actually, by symmetry, all
three vertices have this property). In an arbitrary shadow, the vertex a (the root of two
distinct straight-ahead cycles) needs not to exists. Moreover, for an arbitrary vertex v in an
arbitrary shadow, there is no reason why there must exist a straight-ahead cycle with root v.
This is illustrated in Figure 5.4. In this shadow, there are exactly two straight-ahead cycles,
one with root v1, and one with root v3. In particular, there is no straight-ahead cycle that
has v2 as its root.
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v1 v2 v3

v1 v2 v3

C1 C3

Figure 5.4: In the upper shadow of this figure, there are only two straight-ahead cycles C1
and C3, which are highlighted on the lower hand side.

We will make extensive use of the following elementary facts:

1. Let v be a vertex of a shadow S. Then there are exactly two straight-ahead closed walks
W1,W2 that have v as their startpoint (and endpoint), and that do not contain v as
an internal vertex. These walks are edge-disjoint, and if we regard them as subgraphs
of S, then it is the union of the graphs S = W1 ∪W2.

2. Every nontrivial shadow has at least two distinct (necessarily edge-disjoint) straight-
ahead cycles.

The first statement follows immediately from the fact that if v is a vertex of a shadow
S, then there is an Eulerian straight-ahead closed walk W that starts and ends at v: this
walk W is the concatenation of two walks W1,W2 with the given properties. In the smallest
case, that is, when v is the only vertex of S, the two walksW1 and W2 are also straigh-ahead
cycles of S. The second statement is easily proved by induction on the number of vertices
in the shadow.

Later on we will investigate the role of cut vertices in a shadow; let us finish this discussion
on shadows by recalling the concept of a cut-vertex in a graph. A 1-separation of a connected
graph G is an ordered pair (H,K) of subgraphs of G, each having at least one edge, such
that H ∪K = G and H ∩K is a graph that consists of a single vertex. The vertex of H ∩K
is the cut-vertex of the 1-separation.

5.4 Diagrams
A shadow contains only partial information of a knot, in the sense that if we are given
only the shadow of a knot, then in general we cannot recreate the knot. The additional
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information required to reconstruct the knot is provided by a diagram, the concept we now
proceed to further describe and explore.

A diagram D consists of a shadow S for which we provide the over/under-crossing in-
formation at each vertex. That is, for each vertex it is prescribed which strand goes locally
above (or, equivalently, is the overpass) and which strand goes locally below (or, equivalently,
is the underpass). We call this information the prescription at the vertex. At each vertex
we have two possible prescriptions (corresponding to which of the strands is an overpass
at the corresponding crossing). The collection of prescriptions for all the vertices yields an
assignment for S, resulting in a diagram D that has S as its underlying shadow. If S has
n vertices, then there are 2n possible assignments for S, each one corresponding to exactly
one diagram, and so there are 2n distinct diagrams that have S as their underlying shadow.

Besides saying that D has S as its underlying shadow, we describe this relationship
between S and D in other several natural ways. For instance, sometimes we simply say that
D is a diagram of S. Often we write that S is the shadow associated to D, and we also say
that D is a diagram associated to S.

In the description above (as in many knot theory papers and monographs) we have
used the term strand without further explanation, since its meaning is intuitively obvious
in the context. In general, in this work we will adopt the viewpoint that a strand is a
part of a diagram that corresponds to (the projection of) a proper connected subset of its
corresponding knot. If one imagines the knot as a rope, then a strand is a part of the diagram
that corresponds to the projection of a connected piece of the rope.

We note that the concept of a straight-ahead walk in a shadow S carries over naturally to
a diagram D associated to S. Thus in a diagram we may speak of a straight-ahead traversal
(we cannot use the term walk, since a diagram is not a graph). Moreover, there is no need to
insist that the starting and ending point of a straight-ahead traversal be crossing points in D;
these may be any two points in D. Thus we can equivalently say that a strand of a diagram
D is simply a straight-ahead traversal in D, in which no non-crossing point occurs more
than once. (If a non-crossing point occurred more than once, then we would be traversing
the whole diagram, and then re-traversing some additional part of it). Note that we do not
insist that the endpoints of a strand are distinct from each other.

Since a diagram consists of a shadow plus the prescription at each vertex, we may use the
same labels of combinatorial objects of the underlying shadow (such as vertices and edges)
for the diagram, keeping in mind that a vertex of the shadow corresponds to a crossing of
the diagram. Thus, for instance, if v is a vertex of a shadow S, and D is a diagram of S,
then, if no confusion arises, we may also use v to identify the corresponding crossing in D.

Two diagrams are equivalent if their corresponding knots are equivalent. If D is a diagram
of the unknot, then we say thatD is an unknot diagram. A diagram that contains no crossings
is trivial. Evidently, every trivial diagram is an unknot diagram.
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5.5 Reidemeister moves
There are some important operations that transform a diagram into another diagram. One
of these is a planar isotopy, which is simply a deformation of the diagram that can be
obtained from a self-homeomorphism of the plane. Other very important operations are the
Reidemeister moves of Types I, II, and III, which we illustrate in Figure 5.5.

or

(a) Type I Reidemeister move

or

(b) Type II Reidemeister move

or

(c) Type III Reidemeister move

Figure 5.5: The three types of Reidemeister moves.
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A fundamental result in knot theory, proved independently by Reidemeister [44] and by
Alexander and Briggs [6], is that if D and D′ are equivalent diagrams, then one can take D
to D′ by a sequence of Reidemeister moves and planar isotopies.

5.6 Generalized Reidemeister moves
The three Reidemeister moves are particular instances of a more general operation that turns
a diagram into an equivalent diagram. The following lively description of this operation is
given in [22]: “In practice it is often easier to redraw knots using the principle that any
portion of a strand with only overcrossings may be replaced with another strand with the
same endpoints and all new overcrossings, with the resulting breaks healing. Note that any
such ‘overpass move’ can always be broken down into a sequence of Reidemeister moves and
planar isotopies”.

This operation can be formalized as follows. Let x, y be (not necessarily distinct) points
in a diagram D. Suppose that σ is a strand of D with endpoints x, y, with the property
that as we traverse σ from x to y, all the crossings we find between x and y are overpasses
(respectively, underpasses) for σ. Then we say that σ is an over-strand (respectively, under-
strand) of D. Now suppose that D is a diagram, and σ is an over-strand (respectively,
under-strand) of D with endpoints x, y. Let D′ be a diagram obtained from D by removing
σ, and replacing it by another over-strand (respectively, under-strand) with endpoints x, y.
Then D and D′ clearly are equivalent diagrams. We say that D′ is obtained from D by a
generalized Reidemeister move.

We note that we emphasized that x and y need not be distinct points of D. For instance,
in Figure 5.6(a) we illustrate an overstrand (dotted) that has the crossing point x as both its
initial and its final point. A valid generalized Reidemeister move is to replace this overstrand
by the overstrand that consists only of x, thus obtaining the diagram in Figure 5.6(b). Thus
the diagrams in Figure 5.6 are equivalent to each other.

It is easily seen that, in particular, each of the three classical Reidemeister moves (Fig-
ure 5.5) is a generalized Reidemeister move.

We note for later use that one can further extend this procedure to simplify a diagram
as follows.

Remark. Let x, y be (not necessarily distinct) points in a diagram D. Suppose that σ is a
strand of D with endpoints x, y, with the property that as we traverse σ from x to y, each
crossing we find for the first time is an overpass (respectively, underpass) for the portion of σ
we are traversing. Let D′ be a diagram obtained from D by removing σ, and replacing it by
any over-strand (respectively, under-strand) with endpoints x, y. Then D′ can be obtained
from D by a sequence of generalized Reidemeister moves and isotopies. In particular, D and
D′ are equivalent diagrams.
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x

(a)

x

(b)

Figure 5.6: In the diagram in (a), the dotted strand that has the crossing point x as its
initial point and endpoint is an overstrand. Thus we can apply a generalized Reidemeister
move to this diagram, replacing this strand by the strand that consists solely of the point x,
obtaining the diagram in (b). This is indeed a valid generalized Reidemeister move, since this
one-point strand is also by definition an overstrand. Thus these two diagrams are equivalent.

We will make extensive use of generalized Reidemeister moves in this work. We note
that the term “generalized Reidemeister move” is often used in the context of virtual knot
theory [30]. Since we work exclusively with classic knots, there should be no confusion by
this choice of terminology in our context.
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Chapter 6

Unknot diagrams with the same
underlying shadow

In this chapter we investigate the following question: given a shadow S, how many diagrams
associated to S are unknot diagrams?

6.1 Introduction

6.1.1 The main question
Given a knot diagramD, it is natural to ask if it is always possible to change some over/under
assignments so that the result is an unknot diagram. As we will recall shortly, this is indeed
always possible. The minimum number of such operations is the unknotting number of D, a
widely investigated knot theory parameter.

A closely related question is to take as input a shadow S, and find an over/under assign-
ment that creates an unknot diagram. The fact that such an over/under assignment always
exists (which implies that the unknotting number of a diagram is always well-defined) is a
standar result in any introductory knot theory course, but it would be an overstatement to
claim that it is trivial. The existence of such an over/under assignment is usually demon-
strated with the following intuitive argument, which we reproduce from [31] (we do not
reproduce Kauffman’s figure; Figure 6.1 is our own example):

[Referring to a diagram such as the one on the right hand side of Figure 6.1,
which is an unknot diagram]. Diagrams of this type are produced by tracing
a curve and always producing an undercrossing at each return crossing. This
type of knot is called a standard unknot. Of course we see clearly that a
standard unknot is unknotted by just pulling on it, since it has the same
structure as a coil of rope that is wound down onto a flat surface.

This lively argument gives the following algorithm to create an unknot diagram, starting
from any shadow S. Start at any point p of S that is not a vertex. We now traverse a
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straight-ahead Eulerian walk of S, starting (and ending) at p and each time we find a vertex
for the first time, assign an overcrossing to the strand that is being traversed. In the example
in Figure 6.1, the input is the shadow on the left hand side. By following the algorithm just
described, starting from the marked point p in the direction shown, we obtain the unknot
diagram on the right hand side. We note that the fact that this is an unknot diagram is a
particular instance of the Remark at the end of the previous section.

p

Figure 6.1: Creating an unknot diagram starting from any given shadow.

Thus for any given shadow there always exists a prescription for each of its vertices so
that the resulting assignment gives an unknot diagram. If S is a shadow on n vertices,
then there are 2n diagrams associated to S. It seems natural to ask how many of these 2n
diagrams are unknot diagrams:

Main question. Let S be a shadow with n vertices. Out of the 2n possible assignments for
S (that is, out of the 2n diagrams associated to S), how many are unknot diagrams?

The first rather obvious observation is that the answer to this question surely depends
on the shadow under consideration. If a shadow S has at least one cut-vertex then every
assignment of S will be a a diagram with at least one crossing that is reducible, meaning
that it is removable via a simple twist. Thus the prescrition of a cut-vertex in S is somehow
a degree of fredom for the whole assignment. A shadow without cut-vertices is associated to
diagrams in which no crossing is reducible, these diagrams are called reduced diagrams.

For instance, consider a shadow of a reduced diagram of the trefoil knot (Figure 5.1 (b)).
This shadow has 3 vertices, and so there are 23 = 8 diagrams associated to this shadow.
These 8 diagrams are depicted in Figure 6.2. It is an easy exercise to show that no crossing
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is removable via a simple twist and that 6 of these 8 diagrams correspond to the unknot, 1
corresponds to the trefoil knot, and 1 corresponds to the mirror of the trefoil knot.

Figure 6.2: If we take a shadow of the trefoil knot with three crossings, then out the 23 = 8
diagrams associated to the shadow, 6 are unknot, 1 (top row, third diagram from left to
right) is equivalent to the trefoil knot, and 1 is equivalent to the mirror of the trefoil knot
(bottom row, second diagram from left to right).

An extreme example in the opposite direction is illustrated in Figure 6.3. This shadow
has 4 vertices each one being a cut-vertex, and it is easy to see that each of the 24 = 16
diagrams associated to this shadow is an unknot diagram.

Figure 6.3: Every diagram associated to this shadow is an unknot diagram.
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These examples illustrate the observation that the answer to the Main Question depends on
the shadow under consideration. The interesting question is whether or not, regardless of the
shadow, one can give interesting, nontrivial general bounds for the proportion of diagrams
(associated to a fixed shadow) that represent the unknot.

Suppose S is a shadow on n vertices. Using the framework of Gauss codes as in [30], it
is easy to see that the procedure described above can be used to produce exactly 2n distinct
unknot diagrams associated to S. Thus we have the following.

Remark. If S is a shadow on n vertices, then there exist at least 2n unknot diagrams
associated to S.

Our work in this chapter was motivated by asking: how much better can one do? Is it
true that there exists a superlinear function f(n) such that every shadow with n vertices has
at least f(n) unknot diagrams associated to S? How about a superpolynomial f(n)? Or an
exponential f(n)?

Before moving on to a summary of our results around these questions, let us briefly review
some related work in the literature.

6.1.2 Related work
Recently, Cantarella et al. [10] carried out a complete investigation of all the knot types
that arise in all shadows with 10 or fewer crossings. Their results show that, among all the
diagrams associated to this huge collection of shadows, roughly 78% are unknot diagrams.
Cantarella et al. explain that this large proportion is explained by the existence of “tree-like”
shadows, such as the one we depict in Figure 6.3. These are shadows in which every vertex
is a cut vertex, and so every associated diagram is unknot.

There is also a number of quite interesting results in the literature related to the comple-
ment of our Main Question from the previous subsection: out of the 2n diagrams associated
to S, how many are not unknot diagrams?

According to Sumners and Whittington [45], this was first asked in the context of long
linear polymer chains, independently by Frisch and Wasserman [24] and Delbruck [15]. In
our context, the Frisch-Wasserman-Delbruck Conjecture may be roughly paraphrased as
follows. Let p(n) be the probability that a random knot diagram with n crossings is an
unknot diagram. Then p(n) goes to zero as n goes to infinity.

The first issue to settle in an investigation of the Frisch-Wasserman-Delbruck Conjecture
is: what is a random knot diagram? In [45], Sumners and Whittington investigated (and
settled in the affirmative) this conjecture in the model of self-avoiding walks on the three-
dimensional simple cubic lattice (see [43] for a closely related result). The conjecture has
also been settled in other models of space curves, such as self-avoiding Gaussian polygons
and self-avoiding equilateral polygons [7, 8, 17, 18,27].

The problem of proposing suitable models of random knot diagrams is of interest by
itself. The associated difficulties are explained and discussed in [16], where two different
such models are presented and investigated. We also refer the reader to the preliminary
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report by Dunfield at al. in [19]. It is also worth mentioning the very recent work of Even-
Zohar et al. [23], where several rigorous results are established on the distributions of knot
and link invariants for the Petaluma model, which is based on the representation of knots
and links as petal diagrams [4]. In a very interesting recent development, Chapman [11, 12]
recently proved the Frisch-Wasserman-Delbruck Conjecture under a very general and natural
model.

From the work of Chapman we know that if we take a random diagram on n vertices,
then the probability that it is an unknot diagram decreases exponentially with n. With this
knowledge in hand, our work in this chapter, revolving around the Main Question posed in
the previous subsection, focuses on the abundance (or non-abundance) of unknot diagrams
associated to an arbitrary (that is, not to a random) shadow.

6.1.3 Our results
Returning to the discussion at the end of Section 6.1.1, our goal is to investigate how many
unknot diagrams are guaranteed to exist for an arbitrary shadow.

As we mentioned in Subsection 6.1.1, a folklore argument that is a standar result in all
elementary knot theory courses can be used to show that the number of unknot diagrams
associated to any given shadow is at least linear in the number of vertices in the shadow.
Our main result in this chapter is the following statement, which claims that the number of
unknot diagrams associated to S is actually superpolynomial.

Theorem 9 (Main Theorem). Let S be a shadow with n vertices. Then there exist at least
2 3√n unknot diagrams associated to S.

In Section 6.2 we give an outline of the strategy behind the proof of Theorem 9. As we ex-
plain in Section 6.2, the main statements behind the proof are worked out in Sections 6.3, 6.4,
and 6.5. From these results the proof of Theorem 9, given at the end of Section 6.2, is a
mere formality.

It is natural to ask about the tightness of the bound given in Theorem 9. This bound
is superpolynomial. Would it be possible to go to the next level, and prove an exponential
lower bound? At this point we are unable to answer this question, but we have several
remarks in this direction. This discussion is given in Section 7.1. We close Part II with some
concluding remarks and open questions in Chapter 8.

6.2 Proof of Theorem 9
In what follows, if S is a shadow, then we let U(S) denote the set of unknot diagrams of S.
Thus our ultimate goal is to show that if S has n vertices, then |U(S)| ≥ 2 3√n.

To prove Theorem 9 we need to show that any given shadow S has many unknot diagrams
associated to it. The proof is of an inductive nature. Given a shadow S, the idea is to find
a shadow S ′ smaller (with less vertices) than S, and then show that |U(S)| is greater than
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(typically twice) |U(S ′)|. Applying a similar procedure to S ′, by an inductive reasoning we
find the claimed lower bound for U(S).

The first technique we use to find from S a smaller shadow is the following. Let S be a
shadow, and suppose that C is a straight-ahead cycle of S. Let S ′ be the shadow obtained
from S by removing the edges of C, and suppressing any resulting degree 2 vertices. We use
the notation S ′ = S//C to denote that S ′ is obtained from S in this way.

The key claim is that if S ′ = S//C, then |U(S)| ≥ 2|U(S ′)|, and that a stronger inequality
holds if C has more than one vertex. Formally we have the following statement, whose proof
is in Section 6.3.

Proposition 10. Let S be a shadow, and let C be a straight-ahead cycle of S. Let S ′ = S//C.
Then |U(S)| ≥ 2|U(S ′)|. Moreover, if C has more than one vertex, then |U(S)| ≥ 4|U(S ′)|.

Continuing with the discussion, the idea to iteratively apply this idea until we end up
with a trivial shadow. The formal setting makes use of the following definition.

Definition. (Cycle decomposition). Let S be a shadow. Suppose that S = S1, S2,
. . . , Sp is a sequence of subshadows of S, with the following properties:

• For i = 1, 2, . . . , p− 1, there is a straight-ahead cycle Ci of Si such that Si+1 = Si//Ci.

• Sp is the trivial shadow.

Set Cp := Sp. Then the sequence C1, C2, . . . , Cp is a cycle decomposition of S of size p.

We refer the reader to Figure 6.4 for an example of a cycle decomposition.

An iterative application of Proposition 10 yields the following statement, which is the
first main ingredient in the proof of Theorem 9.

Lemma 11. Let S be a shadow with n vertices. Suppose that S has a cycle decomposition
of size at least 3

√
n. Then |U(S)| ≥ 2 3√n.

This lemma, whose proof is also in Section 6.3 settles Theorem 9 as long as S has a cycle
decomposition of the given size. If all cycle decompositions of S are smaller, then we need a
different approach. The second tool we develop for dealing with this case is more involved,
but the core ideas are easy to explain.

To illustrate this second technique, consider the shadow S in Figure 6.5. We highlight
two straight-ahead cycles B (solid) and R (thick). Let us say that the edges of B are blue, the
edges of R are red, and the edges that are neither blue nor red are gray (see Figure 6.5(a)).

In order to produce many unknot diagrams associated to this kind of shadow, we proceed
as follows. First of all, we focus on diagrams of S for which every blue-gray crossing is an
overpass for the blue strand, and every red-gray crossing is an overpass for the red strand.
Throughout this informal discussion let us refer to these as good diagrams. Thus loosely
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C2

v2

(c)

C3 = S3

(d)

(a)

C1

v1

(b)

Figure 6.4: A cycle decomposition of a shadow. In (a) we depict a shadow S = S1. In (b)
we highlight a straight-ahead cycle C1. After removing the edges of C1, and suppressing the
three resulting degree 2 vertices, we reach the shadow S2 = S1//C1 in (c). Also in (c) we
highlight a straight-ahead cycle C2 of S2. After removing the edges of C2, and suppressing
the three resulting degree 2 vertices, we obtain the trivial shadow S3 = S2//C2, as shown in
(d). We finally set C3 = S3 (thus C3 is a vertex-free cycle). The sequence C1, C2, C3 is then
a cycle decomposition of S = S1.

speaking a good diagram of S is one in which all the gray strands lie “below” the blue and
the red strands. We refer the reader to Figure 6.5(b).

In one case, S = B ∪R, so there are no gray edges. Let us focus on this discussion in the
more difficult case in which there do exist gray edges. In this case, if we ignore completely
the gray edges, B ∪ R may be regarded as a shadow of a link with two components. It is
not too difficult to show that if B and R have m vertices in common, then m is even, and
B ∪R has at least 2m/2 unknot diagrams associated to it.

Going back to S, which consists of B ∪ R plus some gray edges, the central idea is that
an unlink diagram for B∪R can be extended to an unknot diagram of S. Roughly speaking,
since the gray strands lie below the blue and red strands, we may perform Reidemeister moves
on B ∪R safely, essentially ignoring the gray part, since these moves take place “above” the
gray part. An unlink diagram of B ∪R can thus be extended to an unknot diagram of S by
performing the moves on B ∪ R until we unlink them, then collapsing each of B and R to
a single point, and then unknotting the gray part (for this last part, it suffices to take any
unknot diagram of the gray part).
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B

R

(a)

B

(b)

R

Figure 6.5: In (a) we depict a shadow S that has two straight-ahead cycles, the red cycle
R (thick edges) and the blue cycle B. The edges that are neither red nor blue are gray. In
(b) we show a diagram of S, in which every blue-gray (respectively, red-gray) crossing is an
overpass for the blue strand (respectively, red strand).

As one would expect, there are some technical difficulties that need to be sorted out in
the formal proof of this argument, but the simple core idea is the one we have just explained.

Our second main ingredient is summarized in the following statement.

Lemma 12. Let S be a shadow, and let B and R be distinct straight-ahead cycles of S.
Suppose that B and R have exactly m vertices in common. Then |U(S)| ≥ 2m/2.

This statement, whose proof is given in Section 6.4, settles Theorem 9 if S has two
straight-ahead cycles that have at least 2 3

√
n vertices in common. Not surprisingly, there

exist shadows that satisfy neither the condition in Lemma 11 nor the condition in Lemma 12.
On the other hand, one can show that if S does not satisfy the condition in Lemma 11, then
there is a substructure of S that does satisfy the condition in Lemma 12. To make this
precise, let us introduce the concept of a subshadow. This notion is defined by the following
conditions:

1. Every shadow is a subshadow of itself.

2. If S is a shadow and C is a straight-ahead cycle of S, then S//C is a subshadow of S.

3. (Transitivity). If S ′ is a subshadow of S, and S ′′ is a subshadow of S ′, then S ′′ is a
subshadow of S.

Equivalently, we can say that T is a subshadow of S if there is a sequence S = S1, S2, . . . ,
Sr = T such that for i = 1, 2, . . . , r − 1, there is a straight-ahead cycle Ci of Si such that
Si+1 = Si//Ci. Note that Condition 1 above admits the possibility that r = 1, that is, S = T .

An easy but crucial fact that follows from Proposition 10 is that if T is a subshadow of
S, then S has at least as many unknot diagrams as T . Thus in order to apply Lemma 12
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to obtain Theorem 9, we do not need the existence of two straight-ahead cycles with these
properties in S itself; it suffices to guarantee the existence of such straight-ahead cycles in
some subshadow T of S. This last ingredient is provided by the following statement, whose
proof is in Section 6.5.

Lemma 13. Let S be a shadow with n vertices. Suppose that every cycle decomposition of S
has size at most 3

√
n. Then there is a subshadow T of S with the following property. There

exist straight-ahead cycles B and R of T , such that B and R have at least 2 3
√
n vertices in

common.

With this last ingredient in hand, we can finally give the proof of Theorem 9.

Proof of Theorem 9. We start by noting that it immediately follows, from the definition of
a subshadow and Proposition 10, that if T is a subshadow of S, then |U(S)| ≥ |U(T )|.

Let S be a shadow with n vertices. If S has a cycle decomposition of size at least 3
√
n,

then we are done by Lemma 11. If every cycle decomposition of S has size at most 3
√
n, then

by Lemma 13 it follows that S has a subshadow T , such that T has straight-ahead cycles B
and R such that B and R have at least 2 3

√
n vertices in common. Applying Lemma 12 to T ,

we obtain that |U(T )| ≥ 2 3√n. Finally, from the observation in the previous paragraph we
have that |U(S)| ≥ |U(T )|, and so |U(S)| ≥ 2 3√n.

6.3 Finding unknot diagrams using cycle
decompositions: proof of Lemma 11

Our aim in this section is to prove Proposition 10 and Lemma 11. The latter follows from
the former by an easy induction argument.

Proof of Proposition 10. Let S, S ′ be as in the statement of the proposition. Note that for
every vertex v′ in S ′ there is a vertex v in S that naturally corresponds to v′. Now let D
and D′ be diagrams of S and S ′, respectively. If for every vertex v in S its prescription in
D coincides with the prescription of its corresponding vertex v′ in D′, we say that D is an
extension of D′.

We illustrate this idea in Figure 6.6. In part (a) of this figure we have a shadow S, and a
straight-ahead cycle C of S. In (b) we have the shadow S ′ = S//C. On the right-hand side
we have an unknot diagram D′ of S ′, and on the left-hand side we have four diagrams of S
that are extensions of D′.

Let c be the root of C. Consider a fixed unknot diagram D′ of S ′. We let DD′ denote
the set of those diagrams D of S such that (i) D is an extension of D′; and (ii) the strand
σ of D that corresponds to C is either an overstrand or an understrand.

If c is not the only vertex of C , then DD′ consists of exactly four diagrams. Two of these
diagrams are the extensions of D′ in which σ is an overstrand (there are two such diagrams,

53



S

C

(a)

S′
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D′

D4

D2

D3

D1

(c)

Figure 6.6: Illustration of the proof of Proposition 10. In (a) we depict a shadow S, and a
straight-ahead cycle C of S. In (b) we illustrate the shadow S ′ = S//C. On the right hand
side of (c) we depict an unknot diagram D′ of S ′. On the left hand side of (c) we illustrate
the four unknot diagrams of S that we obtain as extensions of the unknot diagram D′ of S ′.

since the only freedom left is the prescription at c), and the other two diagrams are the
extensions of D′ in which σ is an understrand. We refer the reader again to Figure 6.6.
For this example, DD′ consists precisely of the four diagrams of S shown on the left hand
side of (c). The two diagrams on top are the extensions of D′ in which the strand σ that
corresponds to C is an understrand, and the two diagrams at the bottom are the extensions
of D′ in which σ is an overstrand.

On the other hand, if c is the only vertex of C, then DD′ consists of exactly two diagrams:
condition (ii) is vacuous in this case, and so the two possible extensions of D′ are given by
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the two possible prescriptions at c.
Now consider any D ∈ DD′ . Since σ is an overstrand or an understrand in D, it follows

that we can perform a generalized Reidemeister move on σ, replacing it with the strand that
consists solely of the point c, thus obtaining diagram D′. Therefore D is equivalent to D′,
and since D′ is an unknot diagram, it follows that D is also an unknot diagram.

We now note that if D′, D′′ are distinct unknot diagrams of S ′, for they have a different
prescription of the vertices in S ′, then DD′ and DD′′ are disjoint. From this fact and the
observations in the previous two paragraphs it follows that if c is the only vertex of C, then
|U(S)| ≥ 2|U(S ′)|, and if c is not the only vertex of C, then |U(S)| ≥ 4|U(S ′)|.

Proof of Lemma 11. Let S be a shadow with n vertices, such that S has a cycle decom-
position S1, S2, . . . , Sp with p ≥ 3

√
n. A repeated application of Proposition 10 shows that

|U(S)| ≥ 2p−1|U(Sp)|. Since Sp is the trivial shadow, which has only one unknot diagram,
we obtain that |U(S)| ≥ 2p−1.

The bound |U(S)| ≥ 2p−1 just obtained is the best we can obtain from Proposition 10
only if at each step in the cycle decomposition, we remove a cycle that has only one vertex.
Otherwise we can apply at least once the second part of Proposition 10, and obtain that
|U(S)| ≥ 2p. In such a case we are then done, since p ≥ 3

√
n.

Thus we are done unless, at each step in the cycle decomposition, we remove a cycle that
has only one vertex. It is straightforward to see that this can happen only if p = n + 1. In
this case the bound |U(S)| ≥ 2p−1 reads |U(S)| ≥ 2n. Since 2n > 2 3√n for every positive
integer n, it follows that in this case we are also done.

6.4 Finding unknot diagrams using a pair
of straight-ahead cycles: proof of Lemma 12

The arguments for the proof of Lemma 12 depend on whether or not S = B ∪R. As we will
see below, in each case the proposition follows from a sequence of claims. The statements of
these claims could be easily merged to take into account both cases, and their proofs could
be correspondingly adapted to have a single sequence of claims covering both cases. We feel
that this would artificially shorten the proof of Lemma 12, and so we have decided against
this possibility. We think it is more natural, and much easier to follow, if these cases are
handle separately when discussing and proving these claims.

An additional advantage we see from dealing with these cases separately is that we can
work out the easier case S = B∪R first, paving the way for the other, slightly more difficult
case.

In both cases, a major ingredient in the proof is the analysis of digons in a system of two
simple closed curves in the plane. With the purpose of not interrupting the discussion at a
later point with this analysis, we start this section by establishing the respective results.
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6.4.1 Digons in systems of closed curves
Let β be a simple closed curve in the plane. A segment of β is a subset of β that is
homeomorphic to the closed interval [0, 1]. Thus a segment of β is simply a non-closed curve
(including its endpoints) contained in β.

Let β, ρ be simple closed curves that pairwise intersect a finite number of times. A digon
of (β, ρ) is a pair of segments (α, γ), where α is in β and γ is in ρ, such that (i) α and γ
have common endpoints x, y; (ii) the only points in ρ that are in α are x and y; and (iii) the
only points in β that are in γ are x and y. In Figure 6.7 we illustrate this concept.

y

γ

x ρ

α

β

y

x

α1

γ1

α2

γ2

Figure 6.7: On the left hand side we have two simple closed curves β (thick) and ρ (thin).
The common endpoints of the blue segment α and the red segment γ are x and y. The only
points in ρ (respectively, β) that are in α (respectively, γ) are x and y, and so (α, γ) is a
digon of (β, ρ). On the right hand side we have two simple closed curves β = α1 ∪α2 (thick)
and ρ = γ1 ∪ γ2 (thin). This example illustrates that a digon does not necessarily bound an
empty disk (that is, a disk whose interior does not contain any point in the curves). Indeed,
the pair (α2, γ1) is a digon of (α1 ∪ α2, γ1 ∪ γ2), and α2 ∪ γ1 does not bound an empty disk.

If (α, γ) is a digon of (β, ρ), then α ∪ γ is a simple closed curve. Properties (ii) and (iii)
above imply that at least one of the two connected components of R2 \ (α∪γ) does not have
any point in β ∪ ρ (that is, at least one of these connected components is an empty region).
We remark that it is not necessarily true that this empty region is the disk bounded by α∪γ
(see right hand side of Figure 6.7).

We now state and prove the results on digons that we will need in the proof of Lemma 12.

Claim A. Let β, ρ be simple closed curves in the plane that intersect each other a finite,
positive number of times. Suppose that every intersection point of β and ρ is a crossing
(rather than tangential). Then there are at least 4 distinct digons of (β, ρ). Moreover, if b is
a point of β that is not in ρ, and r is a point of ρ that is not in β, then there exists a digon
(α, γ) of (β, ρ) such that α ∪ γ contains neither b nor r.
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Proof. To help comprehension, we colour β blue and ρ red. Let ∆ denote the closed disk
bounded by β.

We can naturally regard the part of β ∪ ρ contained in ∆ as a 3-regular plane graph:
each vertex is incident with two blue edges and one red edge. It is easily seen that if we take
the dual of this plane graph, and discard the vertex corresponding to the unbounded face,
the result is a tree. Now each leaf of this tree corresponds to a digon of (β, ρ), and it is an
elementary graph theoretical fact that every tree has at least two leaves. Thus there are at
least two digons of (β, ρ) whose red segments are inside ∆. A totally analogous argument
shows that there are at least two digons of (β, ρ) whose red segments are outside ∆. This
shows the existence of at least four distinct digons of (β, ρ).

The existence of a digon (α, γ) of (β, ρ) such that α∪ γ contains neither b nor r is easily
worked out by a simple case analysis if β and ρ have exactly two intersection points. We
note that, in this case, there is exactly one digon of (β, ρ) with this property.

Suppose now that β and ρ have at least 4 points in common. Then if (α, γ) and (α′, γ′)
are distinct digons, we must have that α 6= α′ and γ 6= γ′. It follows that only one digon of
(β, ρ) can contain b, and only one digon of (β, ρ) can contain r. Since there are at least four
digons of (β, ρ), it follows that there are at least two (and in particular at least one) digons
(α, γ) of (β, ρ) such that α ∪ γ contains neither b nor r.

Claim B. Let β, ρ be simple closed curves in the plane that intersect each other a finite
number ` of times, where ` ≥ 3. Suppose that there is exactly one intersection point z of β
and ρ that is tangential; all the other intersection points are crossings. Then there exists a
digon (α, γ) of (β, ρ) such that α ∪ γ does not contain z.

Proof. As in the proof of Claim A, we colour β blue and ρ red, and let ∆ denote the closed
disk bounded by β.

Suppose that if we take a small disk δ centered at z (small enough so that z is the only
point in β ∩ ρ that is in δ), then ρ ∩ δ lies outside ∆ (see Figure 6.8). The other possibility
(ρ ∩ δ lies inside ∆) is handled in a totally analogous manner.

Now we proceed as in Claim A, ignoring the part of β ∪ ρ outside ∆, and find at least
two distinct digons (α, γ), (α′, γ′) of (β, ρ), such that γ and γ′( not necessarily distinct) are
inside ∆. Only one of α and α′ can contain z. If α contains z, then (α′, γ′) is a digon of
(β, ρ) that does not contain z. If α′ contains z, then (α, γ) is a digon of (β, ρ) that does not
contain z.

6.4.2 Proof of Lemma 12 for the case S = B ∪R
In this case, the root of B is the same as the root of R. We denote this common root by r.
To help comprehension, we say that the edges of B are blue, and the edges of R are red.

The case where S has exactly one vertex is handled in Claim C below. Thus, suppose
for now that S has more than one vertex, it follows from Claim B, above, that there exist e
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Figure 6.8: Illustration of the proof of Claim B. In each side of this figure we depict a pair
of simple closed curves β and ρ with a finite number of intersections, one of which (namely
z) is a tangential intersection point. On the left hand side we have the case in which δ ∩ ρ
lies outside the disk ∆ bounded by β. Both γ and γ′ are segments inside ∆, and both (α, γ)
and (α′, γ′) are digons, neither of which contains z. In the example on the right hand side,
δ ∩ ρ lies inside ∆, and γ is the only red segment that lies outside ∆. By letting α and α′ be
the blue segments into which ρ naturally breaks β, we have that (α, γ) and (α′, γ) are both
digons. Of these two digons, only (α, γ) does not contain z.

and f edges of S, where e is blue and f is red, such that e and f have common endpoints
diferent from r and neither of them contains r as an interior vertex. Then we call (e, f) a
valid pair of S.

Let (e, f) be a valid pair of S, and let u, v be the common endpoints of e and f . Since r
is not an endpoint of e and f , it follows that the rotation around each endpoint of e (and f)
is blue-red-blue-red. Loosely speaking, we might say that the cycles B and R cross at both
u and v.

We obtain from S a new shadow S ′ as follows. First we split u into two degree 2 vertices.
There are two ways to do such a splitting, so that the result is still a plane graph. We
choose to split u so that, in the resulting graph, one of the two resulting degree 2 vertices
is incident with e, and the other is incident with f . We refer the reader to Figure 6.9. We
proceed analogously with v: we split v so that one of its two resulting degree 2 vertices is
incident with the remains of e, and the other one is incident with the remains of f . Finally,
we suppress the four degree 2 vertices obtained in the process.

It is readily seen that S ′ inherits from S the property that it is the union of two straight-
ahead cycles. These straight-ahead cycles can be naturally labelled B′ and R′, with the
convention that B′ is the straight-ahead cycle that contains the remains of the red edge f ,
and R′ is the straight-ahead cycle that contains the remains of the edge e. We refer the
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Figure 6.9: If (e, f) is a valid pair of edges whose common endpoints are u and v, then we
obtain from S a shadow S ′ by splitting u and v as shown. The resulting shadow S ′ also has
the property that it is the union of two straight-ahead cycles. We can naturally label these
cycles B′ and R′, with the convention that B′ is the cycle that contains the remains of the
red edge f , and R′ is the cycle that contains the remains of the blue edge e.

reader again to Figure 6.9, where (parts of) the cycles B′ and R′ are shown. With this
convention, all the edges of B that were not affected by this operation are edges of B′ (so we
can naturally colour the edges of B′ blue), and all the edges of R that were not affected by
this operation are edges of R′ (so we can naturally colour the edges of R′ red). Moreover, it is
immediately seen that r is the common root of B′ and R′. We let (S,B,R)→e,f (S ′, B′, R′)
denote this oparation. Whenever it is not needed to specify that we obtain S ′, B′, and R′
from the particular pair (e, f), we simply write (S,B,R)→ (S ′, B′, R′).

We also refer the reader to Figure 6.10. In part (a) of this figure we have a shadow S that
is the union of two straight-ahead cycles B and R, and identify a valid pair (e, f). in part
(b) we show the shadow S ′, and the cycles B′ and R′, such that (S,B,R)→e,f (S ′, B′, R′).

Recall that our final aim (Lemma 12) is to show that S has at least 2m/2 unknot diagrams,
where m is the number of vertices that B and R have in common. In the present case
S = B ∪ R, and so each vertex of S is in both B and R. Thus in this case m is simply
the number n of vertices of S. We first deal with the case m = 1. Although this case is a
triviality, we prefer to state it formally to maintain a paralelism with the case S 6= B ∪R.

Claim C. Suppose that S consists of a single vertex. Then |U(S)| ≥ 2.

Proof. In this case S consists of two loop-edges, both incident with the only vertex of S.
Trivially, each of the two possible prescriptions at this vertex yields an unknot diagram.

Claim D. Suppose that (S,B,R)→e,f (S ′, B′, R′). Then |U(S)| ≥ 2|U(S ′)|.

Proof. Let u, v be the common endpoints of e and f . Recall that u, v are the only two vertices
of S that get removed in the process of getting S ′. Thus every vertex of S ′ corresponds
naturally to a vertex in S.
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Let D,D′ be diagrams of S and S ′, respectively. Borrowing the terminology from the
proof of Lemma 11 (there should be no confusion, since these are totally separate statements),
we say that D is an extension of D′ if for each vertex in S ′, its prescription in D′ coincides
with the prescription of its corresponding vertex in D. For each diagram D′ of S ′, there are
exactly 4 diagrams of S that are extensions of D′, as there are two ways to give prescriptions
to each of u and v.

To prove Claim D we show that if D′ is an unknot diagram of S ′, then out of the
four diagrams of S that are extensions of D′, at least two are unknot diagrams. We refer
the reader to Figure 6.10 for an illustration of the argument. In (a) we have a shadow
S = B ∪ R, where B and R are straight-ahead cycles of S. We identify a valid pair (e, f),
and in (b) we show the shadow S ′, and the straight-ahead cycles B′ and R′ of S ′, such that
(S,B,R)→e,f (S ′, B′, R′). In (e), we show an unknot diagram of S ′.

Let D′ be an unknot diagram of S ′. Consider the diagram D1 of S such that (i) D1 is an
extension of D′; and (ii) at both crossings u and v, the red strands are overpasses. Because
of (ii), we can perform a Reidemeister Type II move on the strands that correspond to e and
f , and then perform a series of isotopies so that we end up with the diagram D′. Since D′
is an unknot diagram, it follows that D1 is also an unknot diagram. In Figure 6.10 (c) we
show the resulting diagram D1 obtained in this way from the unknot diagram D′ in (e).

Finally, let D2 be the diagram of S such that (i) D2 is an extension of D′; and (ii) at
both crossings u and v, the blue strands are overpasses. A totally analogous argument shows
that D2 is also an unknot diagram. In Figure 6.10 (d) we show the resulting diagram D2
obtained in this way from the unknot diagram D′ in (e).

We have thus proved that if D′ is a diagram in U(S ′), then there are two diagrams D
of S, such that D is an extension of D′, and D belongs to U(S). We finally observe that if
D′, F ′ are distinct diagrams of S ′, and D,F are diagrams of S such that D is an extension
of D′ and F is an extension of F ′, then D and F are distinct. These two facts imply that
|U(S)| ≥ 2|U(S ′)|.

Claim E. Let S be a shadow, and let B,R be straight-ahead cycles of S such that S = B∪R.
Set S1 := S. Then there is a sequence S1, S2, . . . , Sp of shadows with the following properties.
(i) For i = 1, 2, . . . , p, Si has two straight-ahead cycles Bi, Ri, such that Si = Bi ∪ Ri; (ii)
(Si, Bi, Ri)→ (Si+1, Bi+1, Ri+1) for i = 1, 2, . . . , p− 1; and (iii) Sp has only one vertex.

Proof. We prove this claim by induction on the number of vertices of S. In the base case S
has exactly one vertex, and the statement is trivially true.

At this point we note that in the present case (S = B ∪R, where B and R are straight-
ahead cycles of S), S must have an odd number of vertices. This is an immediate consequence
of the Jordan curve theorem. Indeed, if we regard B and R as simple closed curves, then
the common root of B and R is a tangential intersection of these curves, and all the other
intersections between these curves are crossings.
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Figure 6.10: In part (a) we have a shadow S with a valid pair (e, f), on which we perform
the splitting process. The resulting shadow S ′ is depicted in (b). In (e) we have an unknot
diagram D′ of S ′, and in (c) and (d) we show the unknot diagrams D1, D2 of S that are
extensions of D′.

For the inductive step, we assume that Claim E is true whenever S has 2k − 1 vertices,
for some integer k ≥ 1, and consider a shadow S with 2k + 1 vertices. Recall that S1 = S,
and set B1 := B and R1 := R.

We claim that it suffices to show that there exists a valid pair of edges (e1, f1) of (B1, R1).
Indeed, the existence of this valid pair yields the existence of a shadow S2, with straight-
ahead cycles B2, R2, such that S2 = B2 ∪R2 and (S1, B1, R1)→ (S2, B2, R2). The inductive
hypothesis, applied on S2, B2, and R2, implies the existence of a sequence S2, S3, S4, . . . , Sp
of shadows with the required properties, and so S1, S2, . . . , Sp is the desired sequence. Thus
we finish the proof by showing the existence of a valid pair of edges (e1, f1) of (B1, R1).
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Let β1, ρ1 be the simple closed curves underlying the straight-ahead cycles B1 and R1,
respectively. Let r1 be the common root of B1 and R1. By Claim B, (β1, ρ1) has a digon
(α1, γ1) such that r1 (regarded as a point in β1 ∪ ρ1) is not one of the common endpoints of
α1 and γ1. Let e1 be the edge of B1 that corresponds to α1, and let f1 be the edge in R1
that corresponds to γ1. Then (e1, f1) is a valid pair of (B1, R1).

Conclusion of the proof of Lemma 12 for the case S = B ∪R. We recall from the proof of
Claim E that the number m of vertices of S is odd. Let k := (m− 1)/2. We will show that
|U(S)| ≥ 2k+1, which implies Lemma 12, since k + 1 > m/2.

Consider the sequence S = S1, S2, . . . , Sp guaranteed by Claim E. We note that Si+1 has
exactly two fewer vertices than Si for i = 1, 2, . . . , p− 1. Since Sp has one vertex, and S1 has
m = 2k + 1 vertices, it follows that (2k + 1)− 1 = 2(p− 1). Thus p = k + 1.

By Claim D, we have that |U(Si)| ≥ 2|U(Si+1)| for i = 1, 2, . . . , p − 1. Thus |U(S)| =
|U(S1)| ≥ 2p−1|U(Sp)|. Since Sp has only one vertex, from Claim A we have that |U(Sp)| ≥ 2,
and so |U(S)| ≥ 2p−1 · 2 = 2p = 2k+1 > 2m/2.

6.4.3 Proof of Lemma 12 for the case S 6= B ∪R
As in the case S = B∪R, we say that the edges of B are blue, and the edges of R are red. We
let b denote the root of B, and we let r denote the root of R. The assumption S 6= (B ∪R)
implies that, in this case, b and r are distinct vertices. The scenario we face in this case is
illustrated in Figure 6.11(a).

Since S 6= B ∪ R, it follows that S has edges that are neither blue nor red. We colour
these edges gray, and let Y be the subgraph of S induced by the gray edges.

We say that a vertex v of S is blue-gray if the rotation around v consists of a blue edge,
followed by a gray edge, followed by a blue edge, and then followed by a gray edge. We
extend this naturally to define red-gray, blue-red, and gray-gray vertices. In the example in
Figure 6.11(a), vertex w2 is blue-gray; vertex w1 is red-gray; and vertices u, v, w3 and w4 are
blue-red.

We note that b and r are the only vertices of S that are neither blue-gray, nor red-gray,
nor blue-red, nor gray-gray. Indeed, b is incident with two blue edges and two gray edges,
but since B is a straight-ahead cycle of S, then its rotation is blue-blue-gray-gray, so it is
not a blue-gray vertex according to our convention. An analogous argument shows that r is
not red-gray. We also note that, since B and R are straight-ahead cycles, then every vertex
that is incident with two blue edges and two red edges is necessarily blue-red.

We say that a crossing of a diagram of S is blue-gray if its corresponding vertex in S is
blue-gray. Thus at each blue-gray crossing, a blue strand crosses (overpasses or underpasses)
a gray strand. We define red-gray, blue-red, and gray-gray crossings analogously.

Let D be any diagram of S. Since B and R are straight-ahead cycles of S, it follows that
then D is the union of four strands: (i) one blue strand σB, whose startpoint and endpoint
is b; (ii) one red strand σR, whose startpoint and endpoint is r; and (iii) two gray strands,
each of which has b and r as its endpoints.

Now let DB,R be the set of diagrams of S with the following properties:
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(P1) Each blue-gray crossing is an overpass for the blue strand σB.

(P2) Each red-gray crossing is an overpass for the red strand σR.

We remark that (P1) does not fix a prescription for b, since b (even though it is incident
with two blue and two gray edges) is not a blue-gray crossing. Analogously, (P2) does not
fix a prescription for r, since r is not a red-gray crossing. For instance, the diagrams of S
illustrated in Figure 6.11(c) and (d) belong to DB,R.

We let UB,R denote the set of diagrams of DB,R that are unknot diagrams. We will show
Lemma 12 for the current case (S 6= B ∪R) by proving that |UB,R| ≥ 2m/2 (we recall that in
the stetament of Lemma 12, m is the number of common vertices of B and R).

The concept of a valid pair of edges was fundamental in the proof for the case S = B∪R.
Our next step here is to extend this concept in the current context, to valid pairs of paths.

Suppose that P,Q are internally disjoint paths of S with the same endpoints u, v, such
that P (respectively Q) is contained in B (respectively, R). We remark that neither u nor v
can be equal to b or r, since b is incident with two blue edges and two gray edges, and v is
incident with two red edges and two gray edges. Further suppose that P does not contain b
(as we have just remarked, b cannot be an endpoint of P , but it could be an internal vertex of
P ), and Q does not contain r. Finally, suppose that every internal vertex of P (respectively,
Q), if any, is blue-gray (respectively, red-gray). That is, the only blue-red vertices of P and
Q are precisely u and v. Then we say that (P,Q) is a valid pair of paths of (B,R).

For instance, in the shadow S of Figure 6.11 if we let P be the blue path uw2v, and let
Q be the red path uw1v, then (P,Q) is a valid pair of (B,R). Also if we let P be the blue
(single-edge) path uw4 and we let Q be the red (single-edge) path uw4, then (P,Q) is also a
valid pair. In this same figure, if we let P be the blue path w3bv and let Q be the red path
w3v, then (P,Q) is not a valid pair, since P contains the root b of B.

In analogy with the way we proceeded in the case S = B ∪R, here we will obtain from S
a new shadow S ′ by means of a splitting process. Let (P,Q) be a valid pair of (B,R), where
u, v are the common endpoints of P and Q. First we split u into two degree 2 vertices. There
are two ways to do such a splitting, so that the result is a plane graph. We choose to split u
so that, in the resulting graph, one of the resulting two degree 2 vertices is incident with P ,
and the other is incident with Q. We then proceed analogously with v: we split v so that
one of its two resulting degree 2 vertices is incident with the remains of P , and the other one
is incident with the remains of Q. Finally, we suppress the four degree 2 vertices obtained
in the process. In Figure 6.11(b) we illustrate the shadow S ′ that results by applying this
operation to the shadow S in part (a), using the blue path P = uw2v and the red path
Q = uw1v.

It is readily seen that S ′ inherits from S the property that it is the union of two straight-
ahead cycles. These straight-ahead cycles can be naturally labelled B′ and R′, with the
convention that B′ is the straight-ahead cycle that contains the remains of the red path Q,
and R′ is the straight-ahead cycle that contains the remains of the blue path P . With this
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Figure 6.11: In (a) we have a shadow S, with two straight-ahead cycles B and R. By letting
P = uw2v and Q = uw1v, we have that (P,Q) is a valid pair of paths. We apply the splitting
process to this pair (thus vertices u and v disappear), and obtain the shadow S ′ shown in
(b). In (e) we have an unknot diagram D′ of S ′, and in (c) and (d) we illustrate the unknot
diagrams of S that are extensions of D′.

convention, all the edges of B that were not affected by this operation are edges of B′ (so
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we can naturally colour the edges of B′ blue), and all the edges of R that were not affected
by this operation are edges of R′ (so we can naturally colour the edges of R′ red). Moreover,
it is immediately seen that b is the root of B′ and r is the root of R′. For this operation we
write (S,B,R)→P,Q (S ′, B′, R′). Whenever it is not needed to specify that we obtain S ′, B′,
and R′ from the particular pair (P,Q), we simply write (S,B,R)→ (S ′, B′, R′).

We now establish the following analogue of Claim C.

Claim F. Suppose that B and R are disjoint. Then |UB,R(S)| ≥ 4.

Proof. Let S1 := S//B, and let S2 := S1//R. Thus S2 is the shadow obtained by removing
all the blue and red edges, and suppressing all the resulting degree 2 vertices. We note that
every vertex in S2 naturally corresponds to a vertex in S.

Let D,D2 be diagrams of S and S2, respectively. We say that D is an extension of D2 if
for every vertex in D2, its prescription is the same as the prescription of its corresponding
vertex in D.

Now let D2 be an unknot diagram of S2. There are exactly four diagrams D of S
that satisfy the following: (i) D is an extension of D2; and (ii) D satisfies (P1) and (P2).
Indeed, (i) means that the prescription at every crossing that is gray-gray is induced from
its prescription in D2, and (ii) means that the prescription at every blue-gray or red-gray
crossing is also determined (there are no blue-red crossings, since B ∩ R = ∅). Thus the
prescriptions at b and r are the only ones that have not been fixed for a diagram of S that
satisfies these properties. The only freedom left are the prescription at b (two possibilities),
and the prescription at r (two possibilities). Thus there are indeed exactly four diagrams
of S that satisfy (i) and (ii). We finish the proof of Claim F by arguing that these four
diagrams of S are unknot diagrams.

Let D be any of these four diagrams. Since D satisfies (P1), and B is disjoint from R, it
follows that the strand σB in D that corresponds to B is an overstrand. Thus we can perform
a generalized Reidemeister move to this strand, replacing it with the strand that consists
solely of the point b. Let D′ be the diagram obtained. Since D satisfies (P2), it follows
that the strand σR in D′ that corresponds to R is an overstrand. Thus we can perform a
generalized Reidemeister move to this strand, replacing it with the strand that consists solely
of the point r. As a result we obtain D2. Since D2 can be obtained from D by performing
a sequence of two generalized Reidemeister moves, and D2 is an unknot diagram, it follows
that D is an unknot diagram of S.

Thus there are at least four unknot diagrams of S that are extensions of D2. Each of
these diagrams satisfies (P1) and (P2), and so it belongs to UB,R. Thus |UB,R(S)| ≥ 4.

Now we have the following analogue of Claim D.

Claim G. Suppose that (S,B,R)→P,Q (S ′, B′, R′). Then |UB,R(S)| ≥ 2|UB′,R′(S ′)|.

Proof. Let u, v be the common endpoints of P and Q. We recall that u and v are the
only vertices of S that get removed in the process of getting S ′. Thus every vertex of S ′
corresponds naturally to a vertex of S.
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Let D,D′ be diagrams of S and S ′, respectively. We say that D is an extension of D′ if for
each vertex in S ′, its prescription in D′ coincides with the prescription of its corresponding
vertex in D.

Now let D′ be a diagram in UB′,R′(S ′). There are exactly four diagrams D of S such
that D is an extension of D′, as there are two ways to give prescriptions to each of u and v.
Clearly, these four diagrams are in DB,R(S). To prove Claim G we show that at least two of
these four diagrams of S are actually in UB,R(S), that is, they are unknot diagrams of S.

Consider the diagram D1 of S, such that D1 is an extension of D′, and such that at the
crossings that correspond to u and v, the blue strands are overpasses. It is readily verified
that then D′ can be obtained from D1 by a series of generalized Reidemeister moves and
isotopies. Since D′ is an unknot diagram, it follows that D1 is also an unknot diagram. For
instance, let S be the diagram in Figure 6.11(a), and let S ′ is the diagram in Figure 6.11(b)
(so that (S,B,R) →P,Q (S ′, B′, R′)). If we let D′ be the unknot diagram of S ′ shown in
Figure 6.11(e) (it is readily verified that this is indeed unknot), then the diagram D1 just
described is the one shown in Figure 6.11(c).

Finally, let D2 be the diagram of S, such that D2 is an extension of D′, and such that at
the crossings that correspond to u and v, the red strands are overpasses. A totally analogous
argument to the one used for D1 shows that D2 is also an unknot diagram. In our running
example in Figure 6.11, the diagram D2 is the one shown in Figure 6.11(d).

We have thus proved that if D′ is a diagram in UB′,R′(S ′), then there are two diagrams
D of S such that D is an extension of D′, and D is in UB,R(S). We finally observe that if
D′, F ′ are distinct diagrams in UB′,R′(S ′), and D,F are diagrams in UB,R(S) such that D is
an extension of D′ and F is an extension of F ′, then D is distinct from F . These two facts
imply that |UB,R(S)| ≥ 2|UB′,R′(S ′)|.

We now state and prove the following analogue of Claim E.

Claim H. Let S be a shadow and let B,R be straight-ahead cycles of S, such that S 6= B∪R.
Set S1 := S. Then there is a sequence S1, S2, . . . , Sp of shadows with the following properties.
(i) For i = 1, 2, . . . , p, Si has two straight-ahead cycles Bi, Ri, such that Si 6= Bi ∪ Ri; (ii)
(Si, Bi, Ri) → (Si+1, Bi+1, Ri+1) for i = 1, 2, . . . , p − 1; and (iii) in the shadow Sp, the
straight-ahead cycles Bp and Rp are disjoint.

Proof. At this point we note that in the present case (there are straight-ahead cycles B and
R of S, and S 6= B ∪ R), B and R must have an even number of vertices in common. This
is an immediate consequence of the Jordan curve theorem.

We prove the claim by induction on the number of common vertices of B and R. In
the base case B and R are disjoint, and so the sequence that consists of the single shadow
S1 = S obviously satisfies the required conditions.

For the inductive step, we assume that Claim H is true whenever B and R have exactly
2k− 2 vertices in common, for some integer k ≥ 1, and consider a shadow S in which B and
R have exactly 2k vertices in common. Recall that S1 := S, and let B1 := B and R1 := R.

We claim that it suffices to show that there exists a valid pair of paths (P1, Q1) of
(B1, R1). Indeed, the existence of this valid pair yields the existence of a shadow S2, with
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straight-ahead cycles B2, R2, such that S2 6= B2 ∪ R2 and (S1, B1, R1) → (S2, B2, R2). The
inductive hypothesis, applied to S2, B2, and R2, then implies the existence of a sequence
S2, S3, S4, . . . , Sp of shadows with the required properties, and so S1, S2, . . . , Sp is the desired
sequence. Thus we finish the proof by showing the existence of a valid pair of paths (P1, Q1)
of (B1, R1).

Let β1, ρ1 be the simple closed curves underlying the straight-ahead cycles B1 and R1,
respectively. Recall that b is the root of B1 = B and r is the root of R1 = R. Note that since
S 6= B ∪ R, neither b nor r (regarded as points in β1 and ρ1, respectively) are in β1 ∩ ρ1.
By Claim A, (β1, ρ1) has a digon (α1, γ1) such that neither b nor r is in α1 ∪ γ1. Let P1 be
the path in B1 that corresponds to α1, and let Q1 be the path of R1 that corresponds to γ1.
Then (P1, Q1) is a valid pair of (B1, R1).

We finally show how Lemma 12 in the case S 6= B ∪R follows from Claims F, G, and H.

Conclusion of the proof of Lemma 12 for the case S 6= B ∪R. Recall thatm denotes the num-
ber of common vertices of B and R. We will show that |UB,R| ≥ 2m/2. This obviously implies
Lemma 12, since UB,R(S) ⊆ U(S).

We recall from the proof of Claim H that the number m is even. Let k := m/2. The aim
is then to show that |UB,R(S)| ≥ 2k.

Consider the sequence S = S1, S2, . . . , Sp guaranteed by Claim H. We note that the
number of common vertices of Bi+1 and Ri+1 is exactly two less than the number of common
vertices of Bi and Ri, for i = 1, 2, . . . , p− 1. Thus m = 2k = 2(p− 1), and so p = k + 1.

By Claim G, we have that |UBi,Ri
(Si)| ≥ 2|UBi+1,Ri+1(Si+1)| for i = 1, 2, . . . , p − 1. Thus

|UB,R(S)| = |UB1,R1(S1)| ≥ 2p−1|UBp,Rp(Sp)|. Since Bp and Rp are disjoint, from Claim F we
have that |UBp,Rp(Sp)| ≥ 4, and so |UB,R(S)| ≥ 2p−1 · 4 = 2p+1 = 2k+2 > 2k.

6.5 Finding a subshadow with two suitable
straight-ahead cycles: proof of Lemma 13

Let S be a shadow with n vertices. Let C1, C2, . . . , Cp be a cycle decomposition of S. We
recall that the cycles C2, . . . , Cp are not necessarily cycles in S. (The vertex-free cycle Cp
is certainly not a cycle of S). Indeed, for i ≥ 2, Ci is a cycle of Si, but since Si is not a
subgraph of S (due to the suppression of degree 2 vertices), Ci is not necessarily a cycle back
in S. On the other hand, for i = 1, 2, . . . , p there is a cycle Di in S that is a subdivision of Ci.
We say that D1, D2, . . . , Dp is the primary sequence associated to the cycle decomposition
C1, C2, . . . , Cp. We note that the cycles D1, D2, . . . , Dp are pairwise edge-disjoint, and that
S = D1 ∪D2 ∪ · · · ∪Dp is the union of these graphs.

The workhorses for the proof of Lemma 13 are the following two statements:

Claim A. Let S be a shadow with n vertices. Let C1, C2, . . . , Cp be a cycle decomposition of
S, and let D1, D2, . . . , Dp be the associated primary sequence. Then there exist j, k, 1 ≤ j <
k ≤ p, such that Dj and Dk have at least 2n/p2 common vertices.
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Claim B. Let S be a shadow with n vertices. Let C1, C2, . . . , Cp be a cycle decomposition of
S, and let D1, D2, . . . , Dp be the associated primary sequence. For any j, k, 1 ≤ j < k ≤ p,
there exists a subshadow T of S that has two straight-ahead cycles B and R such that Dj

is a subdivision of B, and Dk is a subdivision of R.
Deferring the proofs of these claims for the moment, we show they easily imply Lemma 13.

Proof of Lemma 13. Let S be a shadow with n vertices. Let C1, C2, . . . , Cp be a cycle decom-
position of S, and let D1, D2, . . . , Dp be the associated primary sequence. By assumption,
p ≤ 3
√
n. Thus it follows from Claim A that there exist j, k, 1 ≤ j < k ≤ p, such that Dj

and Dk have at least 2n/p2 = 2 3
√
n common vertices.

By Claim B, there exists a subshadow T of S that has two straight-ahead cycles B and
R such that Dj is a subdivision of B, and Dk is a subdivision of R. Now it suffices to note
that, since Dj is a subdivision of B, and Dk is a subdivision of R, then every vertex that is in
both Dj and Dk is also a vertex in both B and R. Thus T is a subshadow of S that has two
straight-ahead cycles B and R, such that B and R have at least 2 3

√
n common vertices.

We conclude the section by proving Claims A and B.

Proof of Claim A. Let n be the number of vertices of S. We recall that each edge in S
belongs to Di for exactly one i ∈ {1, 2, . . . , p}. Moreover, if v is a vertex in S, then v is
incident with two edges in Di and two edges in D`, for exactly two distinct i, ` ∈ {1, 2, . . . , p}.

For each two elements Di and D` in the primary sequence of S, we denote n(i, `) to be
the number of vertices in Di ∪ D`, then the sum over all pairs of elements in the primary
sequence ∑p−1

i=1 (∑p
`=i+1 n(i, `)) must be exactly n.

Seeking a contradiction, suppose that for any pair i, ` of distinct elements of {1, 2, . . . , p},
the number n(i, `) is less than 2n/p2. There are

(
p
2

)
distinct pairs in {1, 2, . . . , p}, and so the

toatl sum is less than 2n/p2 ·
(
p
2

)
= n(p− 1)/p. But this is impossible since n(p− 1)/p < n

as we have observed.
Thus there are distinct i, ` ∈ {D1, D2, . . . , Dp} such that Di and D` have at least 2n/p2

common vertices in S.

Proof of Claim B. We prove first this claim for the case j = 1, reading as follows Let S
be a shadow with n vertices. Let C1, C2, . . . , Cp be a cycle decomposition of S, and let
D1, D2, . . . , Dp be the associated primary sequence. For any k, 1 < k ≤ p, there exists a
subshadow T of S that has two straight-ahead cycles B and R such that D1 is a subdivision
of B, and Dk is a subdivision of R.

We prove this statement by induction on p. In the base case p = 2. Thus k = 2, and both
D1 and D2 are straight-ahead cycles of S. The statement then trivially follows by setting
T = S, B = D1 and R = D2.

For the inductive step we work with a shadow S as given in the statement, and assume
that the statement holds for every cycle decomposition (of every shadow) of size at most
p− 1, for some p ≥ 3.

We make essential use of the fact that every nontrivial shadow has at least two straight-
ahead cycles. From this it immediately follows that there is an ` ∈ {2, 3, . . . , p} such that
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D` is a straight-ahead cycle of S. If ` = k then we are done by setting T = S,B = D1, and
R = Dk. Thus we may assume that ` 6= k.

Let U = S//D`. In U we have a collection F1, F2, . . . , F`−1, F`+1, . . . , Fp such that Di

is a subdivision of Fi for each i ∈ {1, 2, . . . , ` − 1, ` + 1, . . . , p}. Moreover, the cycle de-
composition of S induces a cycle decomposition I1, I2, . . . , I`−1, I`+1, . . . , Ip of U , which has
F1, F2, . . . , F`−1, F`+1, . . . , Fp as its primary sequence. By the inductive hypothesis, there is a
subshadow T of U that has two straight-ahead cycles B and R such that F1 is a subdivision
of B, and Fk is a subdivision of R.

Since U is a subshadow of S, then T is a subshadow of S. Since D1 (respectively, Dk)
is a subdivision of F1 (respectively, Fk), then D1 (respectively, Dk) is a subdivision of B
(respectively, R). Thus T is a subshadow of S with the required properties.

Now we go on to the case when j > 1 for which we will make use of the statment above.
Let Si+1 = Si//Ci, for i = 1, 2, . . . , p − 1. Then Cj, Cj+1, . . . , Cp is a cycle decomposition
of Sj. If we let Fi := Cj+i−1 for i = 1, 2, . . . , p − j + 1, we have that F1, F2, . . . , Fp−j+1 is
a cycle decomposition of Sj. Let H1, H2, . . . , Hp−j+1 be the primary sequence of this cycle
decomposition. By assumption, we have that there is a subshadow T of Sj that has two
straight-ahead cycles B,R such that H1 is a subdivision of B, and Hk−j+1 is a subdivision
of R. We note that Dj is a subdivision of H1, and Hk−j+1 is a subdivision of Dk. Thus T is
a subshadow of S (since T is a subshadow of Sj, and Sj is a subshadow of S) that has two
straight-ahead cycles B,R such that Dj is a subdivision of B, and Dk is a subdivision of R,
as required.
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Chapter 7

Knotted diagrams obtained from a
given shadow

7.1 Introduction
From our work in the previous chapter we know that every shadow has many unknot diagrams
associated to it. The driving questions behind the work reported in the present chapter are
the following. Let us say that a shadow S is simple if every assignment on S yields an unknot
diagram. Which shadows are simple? If S is not simple, then is it necessarily true that there
is an assignment on S that yields a diagram of the trefoil knot? We focus as a first step on
the trefoil knot, since it is the nontrivial knot with the smallest crossing number (three). As
we will see shortly, we also investigated this question for the figure-eight knot, unveiling a
totally different scenario than for the trefoil knot.

The following statement characterizes which shadows are simple.

Theorem 14. Let S be a shadow. Then S is simple if and only if every vertex of S is a
cut-vertex.

We answered the second question posed above positively:

Theorem 15. If S is a non-simple shadow, then there is a diagram associated to S that is
a diagram of the trefoil knot.

It is natural to ask how far we can get along the lines of Theorem 15. The next obvious
step is to investigate the figure-eight knot (see Figure 7.2), which is the only knot with
crossing number four, namely, the minimum number of crossings among all diagrams of the
figure-eight knot is exactly four. One might think that for the figure-eight knot, a result
analogous to Theorem 15 could hold, for all sufficiently large non-simple shadows, or at least
perhaps for all sufficiently large shadows that do not have any cut-vertex. However, this
is not the case, not only for the figure-eight knot, but for every knot with even crossing
number:
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(b)(a)

Figure 7.1: Every vertex in the shadow in (a) is a cut-vertex, and so by Theorem 14 this
shadow is simple. The shadow in (b) has only one cut-vertex, and so by Theorem 14 it is not
simple. Moreover, by Theorem 15 this last shadow has an assignment that yields a diagram
of the trefoil knot.

Figure 7.2: The figure-eight knot.

Observation 16. Let K be any knot with even crossing number, and let m be any positive
integer. Then there exists a shadow S with more than m vertices, none of which is a cut-
vertex, with the following property. For every diagram D of S, the knot corresponding to D is
not equivalent to K. In particular, there exist arbitrarily large shadows, with no cut-vertices,
that have no diagram that corresponds to the figure-eight knot.

These statements are proved in Sections 7.2, 7.3, and 7.4, respectively.

7.2 Characterization of simple shadows:
proof of Theorem 14

First we show that if S is a simple shadow, then each of its vertices must be a cut-vertex.
We prove this by induction on the number of vertices of S. In the base case S consists
of exactly one vertex v, and two loop-edges based on v. Thus this only vertex of S is a
cut-vertex, so the statement holds for the base case. For the inductive step, we assume that
the statement holds for every shadow with fewer than n vertices, for some n ≥ 2, and let

72



S be a simple shadow with n vertices. We will show that then every vertex of S must be
a cut-vertex. We first derive a contradiction by assuming that S has no cut-vertex. For
suppose that none of the vertices of S is a cut-vertex. Consider any alternating diagram
associated to S, meaning that the prescriptions of the crossings alternate between under
and over as one travels along any eulerian walk. Since S has no cut vertices, then D is a
reduced diagram. Since the number of crossings of D is n (this follows by the validity of
the first Tait Conjecture [29, 40, 46]), then D is not an unknot diagram, contradicting the
assumption that S is simple. Thus we may assume that S has at least one cut-vertex. Let
v be a cut-vertex of S. Then there are subgraphs H,K of G, each having at least one edge,
such that H ∪K = G and H ∩K (the subgraph of G that is a subgraph of both H and K)
is the graph that consists solely of v. Let H ′ (respectively, K ′) be the graph obtained by
suppressing (the degree 2 vertex) v in H(respectively, K). Then H ′ and K ′ are shadows on
their own right with less than n crossings. We claim that both H ′ and K ′ are simple. For
suppose that H ′ is not simple, and let DH′ be a knotted diagram of H ′. Let K ′′ be a graph
that is a mirror image of K ′ with respect to some line ` traversing K ′ trough v and consider
DK′′ to be an unknot diagram of K ′′. If we suitably sum DH′ and DK′′ , and then perform
a simple twist over K ′′ corresponding to a flip (mirror image of K ′′) with respect to `, then
the result is a diagram D of S. Since DH′ is not an unknot diagram, it follows that D is
not an unknot diagram. The existence of an unknot diagram associated to S implies that S
is not simple, contradicting our hypothesis. Thus both H ′ and K ′ are simple, as claimed.
The inductive hypothesis then implies that every vertex of H ′ and K ′ is a cut-vertex, and
from this it immediately follows that every vertex of S is a cut-vertex.

Now we show, also by induction on the number of vertices, that if every vertex of S is a
cut-vertex, then S is a simple shadow. In the base case S consists of exactly one vertex v,
and two loop-edges based on v. The two possible assignments of S evidently yield unknot
diagrams, and so S is simple. For the inductive step, we assume that the statement holds for
every simple shadow with fewer than n vertices, for some n ≥ 2, and let S be a shadow with
n vertices, such that every vertex of S is a cut-vertex. We consider an arbitrary diagram D
associated to S, and show that D is an unknot diagram.

Consider any vertex v of S. By assumption, v is a cut-vertex, and so its corresponding
crossing in D is a reducible (also called nugatory) crossing. We can thus reduce, the diagram
D to a diagram D′ with one fewer crossing by performing a Reidemeister move of type I,
then D and D′ are equivalent. It is readily verified that the shadow associated to D′ also
has the property that every vertex is a cut-vertex, and so by the induction hypothesis D′ is
an unknot diagram. By the previous observation, D is then also an unknot diagram.

7.3 Every non-simple shadow yields the trefoil knot:
proof of Theorem 15

We first observe that it suffices to prove Theorem 15 for shadows that do not contain any
cut-vertex. This follows easily by an inductive argument. For suppose Theorem 15 holds
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for every non-simple shadow on n − 1 vertices. Then n − 1 ≥ 3, as a quick analysis shows
that every shadow with fewer than 3 vertices is simple. The base case of this induction is
precisely a shadow of a trefoil knot, for which the theorem obviously holds. Now consider
a non-simple shadow S with n vertices. If S has a cut-vertex v, then at least one of the
shadows we get by splitting at v is non-simple, and so by the inductive hypothesis it has a
trefoil diagram. By giving an unknot assignment to the other shadow, the result is a trefoil
diagram for S.

Thus let S be a shadow that does not contain any cut-vertex, and consider a straight-
ahead cycle C of S. Let c be the root of C. Let d1d2e1e2 be the rotation at c, where d1, d2
are the edges that are part of C. Now let W be the straight-ahead walk whose first edge is
e1 and whose last edge is e2. Thus C and W are edge-disjoint, and S = C ∪W .

We assume that both e1 and e2 are outside the closed disc ∆ bounded by C. This is
the case shown in Figure 7.3 where the cycle C is represented by thick black edges. The
alternative case (e1 and e2 are inside ∆) is handled in a totally analogous manner.

As we walk along W starting at c, at some point we must encounter some vertex of C
other than c. This follows since (i) c is not a cut-vertex, and so C must have some vertex
other than c; and (ii) since every vertex of S has degree four, then every vertex in C is also
a vertex of W . Let u be the first vertex of C, other than c, that we find as we traverse W
starting at c. Let W1 be the part of W that we have traversed until (and including) we reach
u, and let f1 be the ending edge of W1; thus f1 is incident with u.

e2 e1

d2
d1

c
W1

W2

W3

v
u

f1

f2g1

g2

Figure 7.3: A (non-simple) shadow S containing a straight-ahead cycle C (thick edges) with
root vertex c. The complement of C in S is the union of three straight-ahead walks W1,W2
and W3. The walk W2 is entirely contained in the disk bounded by the simple closed curve
representing C, and the walk W1 is completely contained in the complement of this disk.

We now continue the traversal of W at the point we interrupted it. Thus we start at u,
and the first edge f2 of this second part of W is inside ∆; this follows since all the edges
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of W1, and in particular f1, are necessarily outside ∆, and W is a straight-ahead walk. We
continue this second part of the traversal ofW until we reach a vertex v of C. Since this part
of the traversal is contained in ∆, it follows that v cannot be c. We let g1 be the last edge
of W traversed in this second stage (thus g1 is incident with v), and let W2 be this subwalk
of W whose first edge is f2 and whose last edge is g1. We emphasize that W2 is contained
inside ∆.

We now complete the traversal of W , starting at the other edge g2 of W incident with
v, and ending at e2; let W3 be this subwalk of W . Note that since g1 is inside ∆, then g2 is
outside ∆, but there may be parts of W3 that lie inside ∆. Thus W is the concatenation of
W1,W2, and W3.

We claim that it suffices to consider the case in which each of W1,W2, and W3 is actually
a path. To see this, suppose that W1 is not a path. Then W1 necessarily contains a straight-
ahead cycle F . Let S ′ := S//F . It is straightforward to see that if S ′ has a trefoil diagram,
then S also has a trefoil diagram: a trefoil diagram of S ′ can be extended to a trefoil diagram
of S by making the strand corresponding to F an overstrand. Let T be the subshadow of
S that results by recursively applying the same procedure to any remaining straight-ahead
cycles of W1 (or of W2, or of W3). Then, in T , the walks W1,W2, and W3 have been reduced
to paths P1, P2, and P3, respectively, and it suffices to show that T has a trefoil diagram.

e2 e1

d2
d1

c

P1

P2

P3

v
u

f1

f2g1

g2

Figure 7.4: The shadow T obtained from the shadow S in Figure 7.3 after removing all
straight-ahead cycles from W1,W2 and W3. In T these walks have been reduced to paths
P1, P2, and P3. The shadow T has an assignment that yields a trefoil knot diagram. Since
T is a subshadow of S, it follows that S has an assignment with the same property.

Let us pause for a moment to review where we stand. We have a shadow T , with a
straight-ahead cycle J (obtained from C) with root is c. Indeed, in the process of eliminating
straight-ahead cycles from W1,W2, and W3, some of these straight-ahead cycles have had
vertices in common with C: these vertices became degree 2 vertices in the process, and were
suppressed. We let J denote the cycle that is induced from C, so that C is a subdivision of
J . Now the remains of W (in case we eliminated straight-ahead cycles) form a walk U that
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starts and ends at c, and that is the concatenation of three paths P1, P2, and P3. The path
P1 is contained outside ∆, the path P2 is contained inside ∆, and the path P3 has its first
edge and its last edge outside ∆, but it may have edges inside ∆. To finish the proof we
need to show that T has a trefoil diagram.

Consider now a diagram D in which the strand corresponding to P3 is an overstrand. We
note that this fixes the prescriptions at all the vertices of T , with the exception of c, u, and v,
whose prescriptions we leave open for the moment. The fact that this fixes the prescription
at every vertex w /∈ {c, u, v} follows simply because the structure of T is such that every
vertex w /∈ {c, u, v} is necessarily an internal vertex of P3.

We can now perform a generalized Reidemeister move on the strand corresponding to
P3, transforming it into a strand that is contained outside ∆ and does not have any internal
crossings. The result is a diagram D′ with only three crossings (those corresponding to c, u,
and v), whose shadow consists of a 3-cycle plus one parallel edge added to each edge. Thus
if the prescriptions at c, u, and v are suitably chosen in D, then D′ is a trefoil diagram, see
Figure 7.5. Since D is equivalent to D′, it follows that there exist suitable prescriptions at
c, u, and v such that D is a trefoil diagram.

u

c

v
u

c

v

Figure 7.5: On the left hand side of this figure we have a diagram associated to the shadow
in Figure 7.4. Note that the strand corresponding to P3 is an overstrand. Thus we can
perform a generalized Reidemeister move on this strand, obtaining the trefoil diagram on
the right hand side.

7.4 Shadows that do not induce any knot with even
crossing number: proof of Observation 16

For each odd integer n ≥ 5, let Cn be a shadow obtained from a cycle with n vertices by
adding a parallel edge to each edge. We call Cn the n-circulant. In Figure 7.6 we illustrate
the 7-circulant C7.

To prove the observation it suffices to show the following: for every odd integer n, if D
is a diagram of Cn, then the knot corresponding to D has odd crossing number.
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Figure 7.6: The 7-circulant C7. No diagram associated to C7 is equivalent to a diagram of a
knot with even crossing number (and in particular to the figure-eight knot).

A straightforward inductive argument shows that every diagram of Cn is equivalent to an
alternating diagram of Ct, for some odd t ≤ n. We recall that if D is an alternating reduced
diagram of a knot, then the number of crossings of D is the crossing number of this knot.
Thus if D is a diagram of Cn, then the knot corresponding to D has odd crossing number,
as claimed.
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Chapter 8

Concluding remarks and open
questions

It seems natural to ask if one could hope to prove a much better bound than the one given
by Theorem 9. To explore this question, we let Umin(n) denote the best possible bound.
That is, for each positive integer n,

Umin(n) := min
|S|=n

U(S),

where the minimum is taken over the number of unknot diagrams U(S) of all shadows S
with n vertices.

Under this terminology, Theorem 9 gives the superpolynomial bound Umin(n) ≥ 2 3√n.
Leaving aside relatively marginal possible improvements, such as showing that Umin(n) ≥
2
√
n, the important question seems to be the following.

Question 17. Is Umin(n) an exponential, or a subexponential function?

With this question in mind, we start by noting that [11, Proposition 10] implies the
existence of a constant d < 1 such that, for all sufficiently large n, the probability that a
diagram is unknot is at most dn. From this it immediately follows that Umin(n) < bn, for
some constant b, 1 < b < 2. We also recall the following result of Chapman:

Theorem 18 ([11, Theorem 1]). As the number of crossings n of a randomly sampled knot
diagram grows large, the probability that the diagram is knotted tends to 1 exponentially
quickly.

Although it must be possible to extract, from the proof of Theorem 1 in [11], an explicit
constant d ∈ (1, 2) such that Umin(n) < dn, we have not been able to estimate it.

The task of finding such an explicit constant d is obviously complicated by the difficulty
of estimating |U(S)| for a shadow S with a large number of vertices. This is a hopeless
problem except for particularly simple families of shadows. For instance, this calculation
can be carried out exactly for the family of circulant shadows (see Section 7.4). A tedious
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but elementary exercise shows that Cn has exactly
(
n+1
n+1

2

)
≈
√

8
π(n+1) · 2

n unknot diagrams
associated to it.

An approach to derive upper bounds for Umin(n) is to consider any fixed shadow T , and
take the connected sum T k of k copies of T . (One can easily extend to shadows the definition
of the connected sum of diagrams). Suppose that T has m vertices, and |U(T )| = t. Since
the connected sum of two diagrams is unknot if and only if each of the diagrams is unknot, it
follows that T k has exactly tk unknot diagrams. Thus T k is a shadow with n := km vertices
and |U(T k)| = tk = (tk/n)n = (t1/m)n.

For instance, we can apply this idea to a shadow of the trefoil knot with 3 vertices, which
has 6 unknot diagrams. With this construction we obtain that for every positive integer n
divisible by 3 there is a shadow Sn with n vertices such that |U(Sn)| = (61/3)n ≈ (1.861)n.
This shows that, for every positive integer n divisible by 3, Umin(n) ≤ (61/3)n.

To improve this upper bound we need to exhibit a shadow T withm vertices and t unknot
diagrams, such that t1/m < 61/3. The best result we have found so far in this direction is
using the shadow depicted in Figure 8.1. This shadow has 16 vertices, and using SnapPy [13]
we found that it has at most 6416 unknot diagrams. Thus it follows that, for every positive
integer n divisible by 16, Umin(n) ≤ (64161/16)n ≈ (1.729)n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 8.1: This shadow has 16 vertices and at most 6416 unknot diagrams. By taking the
connected sum of k copies of this shadow, for every k ≥ 1, it follows that for every positive
integer n divisible by 16 there is a shadow with n vertices and (64161/16)n ≈ (1.729)n unknot
diagrams.

Returning to the discussion in Section 7.4, we note that the arbitrarily large shadows
that do not produce any knot with even crossing number have a very special structure: they
are “long and thin”. In structural graph theory terminology, this infinite family of shadows
has bounded (actually, very small) path-width [39]. It seems natural to wonder if there exist
infinite families of shadows with similar properties, but with unbounded path-width. We
suspect that this is not the case:
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Conjecture 19. For each fixed knot K, there is a constant c := c(K) with the following
property. If S is a shadow with path-width at least c, then there is a diagram associated to
S whose corresponding knot is equivalent to K.

An alternative, perhaps more natural version of this conjecture involves the notion of
tree-width, rather than path-width. We refer the reader to the standard reference [39] for a
comprehensive discussion on this standard graph theoretical parameter. For this discussion
we recall that a graph with large tree-width contains a large planar grid as a minor. Working
with a fixed diagramD, by this property it seems reasonable to expect thatD can be obtained
from every shadow with sufficiently large tree-width. Thus we put forward the following
variant of the previous conjecture. This is actually a weaker version of Conjecture 19, as
graphs with large tree-width have large path-width as well.

Conjecture 20. For each fixed knot K, there is a constant d := d(K) with the following
property. If S is a shadow with tree-width at least d, then there is a diagram associated to S
whose corresponding knot is equivalent to K.
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