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Yo, Mario Lomeĺı Haro, estudiante del Posgrado en Ciencias Aplicadas
de la Facultad de Ciencias de la Universidad Autónoma de San Luis Potośı,
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Do not go gentle into that good night,

Old age should burn and rave at close of day;

Rage, rage against the dying of the light.

Though wise men at their end know dark is right,

Because their words had forked no lightning they

Do not go gentle into that good night.

Rage, rage against the dying of the light.

Dylan Thomas.
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Resumen

En este trabajo abordamos dos problemas sobre poĺıgonos convexos, con
vértices en un conjunto finito de puntos en el plano, en posición general.

En el primer problema, obtenemos el dibujo rectiĺıneo de la gráfica com-
pleta, con vértices en la colección de puntos dada, y colorearemos las aristas
de acuerdo a la siguiente regla: para cualesquiera dos aristas, si sus cer-
raduras son disjuntas, entonces deben tener diferente color. Estudiaremos el
número de colores necesarios y suficientes que debe tener cualquier coloración
de este tipo.

En este trabajo, encontramos el número de colores necesarios y suficientes
para colorear las aristas de la gráfica completa, cuando los vértices están
en la doble cadena. Cabe mencionar que, este problema estaba resuelto
únicamente para cuando la colección de puntos es el conjunto de vértices de
un poĺıgono convexo.

Probaremos que si coloreamos, de manera óptima, las aristas con ex-
tremos en la cadena mayor, y posteriormente, seleccionando cada vértice
restante, y coloreando del mismo color sus aristas incidentes, entonces el
número de colores empleados es el óptimo.

De nuestro resultado, conjeturamos que, para obtener una coloración
óptima en cualquier colección de puntos, se procede de manera semejante:
colorear, de manera óptima, las aristas con extremos en el poĺıgono convexo
más grande, y posteriormente, seleccionando cada vértice para colorear de
un solo color todas las aristas incidentes a él.

Formalmente, estamos coloreando, de manera óptima, la gráfica de dis-
juntez GD = (VD, ED), inducida de un conjunto P de puntos en el plano
en posición general. Obtenemos a GD de la siguiente manera: tomamos
el dibujo rectiĺıneo D de K|P | = (P,E) y hacemos VD = E, y ED =
{ee′ : las cerraduras de e y de e′ no se intersectan en D}. Que, como men-
cionamos, tal número cromático sólo es conocido para cuando P es el conjunto
de vértices de un poĺıgono convexo. Probamos que la gráfica de disjuntez,
en la doble cadena, tiene un número cromático sustancialmente más grande
que el que se conoce.

En el segundo problema que estudiamos, nos interesa que los poĺıgonos
sean vaćıos, y no necesariamente buscamos el más grande. Buscamos parti-
cionar el cierre convexo del conjunto de puntos dado P con poĺıgonos con-



vexos, con interiores disjuntos, cuyos vértices estén en P . A este conjunto
de poĺıgonos se le llama descomposición convexa. Estamos interesados en
descomposiciones convexas de cardinalidad mı́nima.

Por poner un ejemplo, tenemos a las triangulaciones: descomposiciones
convexas cuyos elementos, desde luego, son triángulos. El número de ele-
mentos en una triangulación es bien conocido. Si pudiéramos encontrar una
descomposición convexa cuyos elementos fueran cuadriláteros, su cardinali-
dad seŕıa la de una triangulación dividida por dos. Pero es fácil encontrar
colecciones de puntos que no admiten cuadrilaterizaciones, en las que to-
dos sus elementos sean convexos. Partiremos de una triangulación espećıfica
y encontraremos aristas que pueden ser eliminadas para obtener poĺıgonos
convexos más grandes, reduciendo la cardinalidad de la descomposición.



Preface

In this work we study two problems involving convex polygons with its
vertices in a given point set. In the first problem, we obtain a rectilinear
drawing of the complete graph and color the edges according to the unique
rule: for any given two edges, if their closures are disjoint, then they must
have different color. We analyze how to color all the edges using as fewest
colors as possible, when the set of vertices is the double chain. We prove
that to use the fewest colors, first, we color the edges with its endpoints
in the biggest convex chain in an optimal way, and second, we select every
remaining point and color all of its incident edges with a new different color.

We conjecture that the optimal way of coloring the edges of the complete
graph with vertices in any given point set is similar: first obtain the biggest
subset of points in convex position (without caring if it is empty or has
another elements in its interior) to color all its incident edges in an optimal
way, and second, color the remaining edges by coloring with one different
color all the edges incident with each of the remaining vertices.

Formally, we are studying the chromatic number of the edge disjointness

graph of the complete graph, with its vertex set in a given point set. As far
as we know, such chromatic number is only known when the point set is the
set of vertices of a convex polygon. In the double chain we obtain a number
substantially bigger than the previous one.

In the second problem, we care if the polygons are empty, and we may not
be interested in the biggest one, we are interested in decompose the convex
hull using the smallest number of empty interior disjoint convex polygons,
with vertices in the given point set. Specifically, we give an upper bound
on the number of these polygons. Such set of polygons is called Convex

Decomposition.
For instance, a triangulation is a convex decomposition in which every

element, obviously, is a triangle. The number of triangles obtained is well
known. If we could decompose in quadrilaterals, the number of elements,
would be the number of triangles divided by two; if we could decompose in
pentagons, the number of elements would be the number of triangles divided
by three, etcetera. But its easy to find point sets that do not admit a convex
decomposition containing only quadrilaterals (and hence only pentagons, or
only hexagons, and so on). So we are allowing different polygons.



It is known that, in any triangulation always we can find pairs of triangles
that can be joined to obtain convex quadrilaterals. We use this idea to obtain
bigger convex polygons, such pentagons or hexagons, and get a better upper
bound.

By the nature of the problems we study in this work, we remark that, all
the point sets we consider have no three or more elements on a line.
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Chapter 1

Introduction

Paul Erdős said that Computational Geometry started in 1694, with the problem
of how many unit spheres can be touched by a single unit one. Isaac Newton
believed that the number was 12 while David Gregory claimed it was 13. This
problem was solved until 1953 by Shütte and van der Waerden. They proved
that Newton was right.

Computational Geometry and Discrete Geometry have grown considerably.
The success of this fields can be explained by itself from the beauty of the pro-
blems and its solutions, and the lots of its applications. Among its applications
we can mention: illuminating, guarding art galleries, image processing, com-
putational complexity, etc. Topics on which there is a clear symbiosis between
Mathematics and Computer Sciences.

Its worthy to mention about the recent topic that appeared, making even
more clear this symbiosis: the Computational Complexity, which makes the
analysis of an algorithm and it, roughly speaking, says how many steps inevita-
bly a computer has to make, when an algorithm is implemented by a good or a
bad programmer. And then appeared the NP-complete problems, which are so
complicated that the computer will not be useful despite its power of processing.
In this problems it is very important the mathematical tools used to calculate
the number of steps, that there will be in solving a case of a problem.

About the beauty, for mention something, there is the Paul Erdős phrase:
“God keeps the perfect proofs for the mathematical theorems in The Book”.
M. Aigner and G. M. Ziegler continued the work of Paul Erdös of selecting
problems, and solutions, that on their opinion (and the lots of us) must be
in The Book. We can find several theorems with its proofs, in Discrete and
Computational Geometry, in the compilation “Proofs from THE BOOK” [2].
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We state a precedent in Discrete Geometry, proved by Esther Klein in 1931,
interesting for our work. She observed that in any set of five points on the plane,
there is always a convex quadrilateral with its vertices in such set. We state it
formally with the following theorem:

Theorem 1 (E. Klein, 1931) In any set of 5 points, there is always a set of
four of them being the vertices of a convex quadrilateral.

Proof: Trivially if the points are the vertices of a convex pentagon or a quadri-
lateral (with one point in its interior), we are done. See Figure 1.1.

Figure 1.1: Trivial cases.

In the case that the points are the set of vertices of a triangle T with two
points in its interior, call such interior points p and q, and make ℓ the line pq.
We will have that the two vertices of T on the same side of ℓ, and p and q are
the vertices of a convex quadrilateral. See Figure 1.2.

Figure 1.2: Quadrilateral with vertices p and q, and the vertices of the triangle
on the same side of the line pq.

In this work we are interested in two problems of Discrete Geometry: The
chromatic number of the disjointness graph, a geometric variant of Knesser
Graph, and the problem of convex decompositions. We have two definitions
we use to describe this work.
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Definition 2 Let P be a point set in the plane. We say that P is in general
position if there are no three or more elements of P on a straight line.

Definition 3 Let P be a point set in the plane. We say that P is in convex
position if P is in general position and is the set of vertices of a convex polygon.

Problem 1. The first problem we study here will be described as follows: We
take P , a set of n points in the plane, and for every pair of points we draw
the line segment joining them. We will color all the segments according to the
following rule: if the closures of any two given segments have no common points,
then they must have different color. We are interested in the smallest number
of colors needed to do it.

The problem is only solved when P is in convex position. Here we study
the number of colors when the point set is the double chain. We prove that the
number of colors required is substantially bigger than those needed when the
vertex set is in convex position.

If P is not in convex position, still we can find a convex polygon C having
elements of P as its vertices, and covering the remaining points. We give a
definition.

Definition 4 The convex hull of P is the smallest convex set containing P .
We denote it as conv(P ). Also we will denote as h = h(P ) the number of its
vertices.

Problem 2. The second problem we study is about Convex Decompositions.
In this problem, quite the opposite to the previous one, we will add the fewest
necessary edges as possible and shatter (decompose) the convex hull of P in
interior–disjoint convex polygons, such as triangles, quadrilaterals, pentagons,
etc, with its vertices on P . Such set of polygons is called convex decomposition.
We will show how to obtain a convex decomposition of P with at most 10

7 |P |
elements.

Esther Klein’s Theorem is interesting in Problem 1, since we can try to
generalize it to find the biggest subset S of P in convex position (having or not
other points of P in its interior). We will color optimally the segments with
both ends on S, and color the remaining segments with another strategy. See
Figure 1.3.

Esther Klein’s Theorem is also interesting in Problem 2, since it takes us to
find convex polygons, but this time, empty. See Figure 1.3. We describe these
ideas and give the formal definitions in next chapters.
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Figure 1.3: Different drawings of K5 colored, and convex decompositions of the
different 5–point sets.

By the nature of the problems we study in this work, as we mentioned,
we will always assume that the point sets under consideration are in general
position. Also, instead of talking about that a point set which contains the set
of vertices of a convex r-gon, we simply say that it contains a convex r–gon.
Obviously, such polygon will be empty if it has no other points in its interior.

As in both problems we study here, the number of colors and the number of
convex polygons, are in terms of the cardinality of the point set under conside-
ration, P will denote a finite set of points in the plane in general position. Also
n will denote its cardinality, always with n ≥ 5.

1.1 Outline of this thesis

In next chapter we give notions of the tool we are using: Graph Theory. We
give the basic definitions, and the way we are representing the graphs so we can
use them.

In Chapter 5 we analyze the chromatic number of the disjointness graph,
induced by the resulting drawing with vertices in the double chain.

In Chapter 6 we continue studying convex polygons. Not only the biggest
one in the point set. We will allow others as triangles, pentagons, etc.

Finally, in Chapter 7 we state the future work.
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Chapter 2

Graphs

We are using graphs in this work. Here is the formal definition [5].

Definition 5 A graph is a pair G = (V,E) such that V 6= ∅ and E ⊆ V 2, thus
the elements of E are 2–elements subsets of V . We shall always assume that
E ⊆ V 2 \ {(v, v) : v ∈ V }. The elements of V are the vertices of the graph G,
and the elements of E are its edges.

Note. In this thesis we will work only with finite sets of vertices.

If e = (u, v) ∈ E, we say that e joins the vertices u and v, and we denote it
as uv = vu. We say u and v are adjacent, and that such edge is incident with
both u and v, or that u and v are its endvertices or its ends.

So, we shall not always distinguish strictly between a graph G = (V,E) and
its vertex or edge set. We will speak of a vertex v ∈ G rather than v ∈ V , and
edge e ∈ G rather that e ∈ E, and so on. And given a point (vertex) v, not in
G, we write G ∪ v instead of V ∪ {v}, or if v is a vertex in G, we write G \ v
instead of V \ {v}, the same as with an edge e, not in G, we write G ∪ e rather
than E ∪ {e} and, if e is in G, we write G \ e rather than E \ {e}.

A path is a non-empty graph W = (V,E) of the form V = {v0, v1, v2, ..., vk}
and E = {v0v1, v1v2, ..., vk−1vk}, where all the vi are distinct. We say that v0
and vk are linked by W and are called its endvertices or ends; v1, v2, ..., vk−1 are
the inner vertices of W . The number of edges of a path is its length. We often
refer to a path by the natural sequence of its vertices writing W = v0v1v2...vk.
And, if for any given u, v in a graph G there is always a path linking u and v,
we will say that G is connected.

10



If W = v0v1v2...vk is a path, and v0 and vk are adjacent, then the graph
C = W ∪ vkv0 will be called a cycle. As we do in paths, we denote a cycle by
its cyclic sequence of vertices, so C might be written as v0v1v2...vkv0.

These abstract objects are called graphs since they can be represented gra-
phically on the plane keeping all its properties [4]. The pictures representing
them are called drawings.

A drawing of a graph G in the euclidean plane consists of a point set, one
for each vertex of G, and a collection of simple open arcs, one for each edge,
such that if e is an edge of G with ends u and v, then the topological closure of
the arc α representing e consists of α and the points representing u and v.

We say that a drawing is good if:

i) Any two arcs (edges) have only finitely many points in common.

ii) If two arcs have a common interior point, then they properly cross at this
point, that is, the first arc passes from one side of the second arc to the other
side.

iii) No three arcs have a common interior point.

Figure 2.1: Good drawings of the same graph.

Note. We are interested only in good drawings, so from now on, when we say
drawing we mean good drawing.

Observe that in the definition of good drawing, we allow intersections be-
tween the edges.

Definition 6 Let D be a drawing of the graph G. A crossing in D is a point in
R

2 in which two edges intersect. The number of crossings in D will be denoted
as

cr(D).
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The concept of crossing is fundamental for Problem 1, since we will be com-
paring, in all pair of edges, if they cross each other, if they have a vertex in
common or if they are disjoint. In Problem 2 we want drawings strictly without
crossings.

Definition 7 A graph G is planar if there exists a drawing of it in which there
are no intersections between its edges. Equivalently, G will be called planar if,
and only if there exists a drawing D of G with cr(D) = 0.

Observe that in Figure 2.1 there are 3 crossings in the left drawing, while in
the right one there are no crossings, so the graph drawn is planar.

Let G be a planar graph and D be a drawing of G without crossings. A
connected region of R2 \ D will be called a face. As every graph considered
in this work is a finite set, all its drawings are compact, so if D is a drawing,
there is an open disc F containing D. The infinite region containing R

2 \F will
be called the infinite face or the external face. The finite faces will be called
internal faces.

By the nature of the problems we study, we work only with geometric graphs:
graphs drawn on the plane with its edges represented as straight line segments.
These representations are also called rectilinear drawings. In the next figure we
show the rectilinear drawings of the graphs drawn on Figure 2.1.

Figure 2.2: Rectilinear drawings of the same graph.

Definition 8 The complete graph with vertex set P is the graph Kn = (P,E)
in which E = {uv : u, v ∈ P and u 6= v}.

Two edges will cross each other, in any drawing of Kn, if and only if they
are the diagonals of a convex quadrilateral. See Figure 2.2. By Theorem 1,
any drawing of Kn will have crossings for n ≥ 5. And as we mentioned, we are
interested in whether or not two edges have a point in common so they can be
colored. In Figure 2.2 we see the importance of the location of the points.

We give a trivial bound for Problem 1:
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Figure 2.3: Drawing of K7. The crossing between shaded edges is induced by
the gray quadrilateral. The one with dotted edges is induced by the white
quadrilateral, and so on: there is a crossing if and only if there is a convex
quadrilateral.

Proposition 9 The number of colors needed to color the edges of Kn, as des-
cribed in Problem 1, is at least

⌈n

2

⌉

.

Proof: Since P is in general position, then it is easy to find a plane cycle
C = v1v2 . . . vnv1 with vertex set P . And as vivi+1 and vjvj+1 are disjoint, for
every 2 ≤ i + 1 < j ≤ n − 1, then every three consecutive edges of C cannot
have same color, so, the set of edges of C needs at least ⌈n

2 ⌉ colors.

Next we give a trivial bound for Problem 2.

Quite the opposite, in convex decompositions we want as few edges as po-
ssible. We want to obtain a planar connected graph, with the fewest possible
convex faces shattering the convex hull of P . We mentioned that a triangulation
is a convex decomposition. In fact, it is the convex de composition with the
biggest number of elements, namely 2n − h − 2. We can improve this bound,
trivially, as we show next. We use the definitions in [10, 16]:

Definition 10 Let T be a triangulation of P . If e is the common edge of two
triangles t1, t2 ∈ T such that Q = t1 ∪ t2 is a convex quadrilateral, then we say
that e is a flippable edge. By flipping e we mean the operation of removing e
and replacing it by the other diagonal of Q.

Observe that, if we have a convex k–gon Q triangulated in a triangulation
T , the diagonals of Q are flippable edges. So, if we remove them from T ,
we decrease the number of polygons. But, in general, the converse situation of
removing flippable edges, being sides of same triangle, in any given triangulation,

13



Figure 2.4: Triangulations with its flippable edges dashed. The triangulations
on the left and the central one are obtained by means of a flip. Similarly, the
central and the one on the right.

cannot result a convex polygon. See the triangulation on the center in Figure
2.4. This situation lead us to the following definition.

Definition 11 Let T be a triangulation of P , with e and e′ two flippable edges.
If e and e′ are not sides of the same triangle, we will say that they are simulta-
neously flippable edges.

J. Galtier, F. Hurtado, M. Noy, S. Perennes, J.Urrutia [10] prove that in
any triangulation there are always a set with at most n−4

6 edges that can be
simultaneously flipped. If we remove such edges, we will obtain a convex de-
composition with 2n − h − 2 − n−4

6 = 11n−8
6 − h elements: n−4

6 quadrilaterals
and 5n−2

3 − h triangles. We have proved the following bound:

Theorem 12 There exists a convex decomposition of P with at most

11n− 8

6
− h

elements.

Figure 2.5: Convex decomposition after removing one pair simultaneous flip-
pable edges.

To find our bound, we will start from a specific triangulation and use the
idea of removing edges.
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Finally, we give some definitions we are using in the next chapter.

Definition 13 Let G = (V,E) be a graph. A vertex coloring of G is an as-
signment of k colors to the vertices of G. The coloration is proper if every two
adjacent vertices have different colors.

That is, given a set K of colors, a proper vertex coloring of G is a function
c : V → K such that if uv ∈ E then c(u) 6= c(v). See Figure 2.6. We denote by
|c(G)| the number of colors in K used to color G.

Figure 2.6: Proper vertex coloring of two graphs: adjacent vertices must be
colored with different colors.

The chromatic number of a graph G is the smallest number of colors needed
to get a proper vertex coloring of G. We denote it as χ(G). A coloring c(G)
will be optimal if |c(G)| = χ(G). In Figure 2.6 we colored two graphs, the one
on the left can be colored using only three colors, by coloring in blue or green
the vertex colored in black. Observe that the chromatic number of both graphs
is 3.

15



Chapter 3

Coloring the edges in Kn

with its vertices in the

double chain

In this chapter we present the results obtained in [8].

We obtain the rectilinear drawing D(P ) ofKn induced by P , and color all its
edges with the only restriction that: for any given two edges, if their respective
closed segments are disjoint, then they must have different colors.

We explain this situation with graph coloring.

3.1 The disjointness graph

Definition 14 Let P = {v1, v2, ..., vn} and D(P ) be the rectilinear drawing of
Kn with vertices in P . We define the disjointness graph D(P ) as the graph
which vertex set is V = {ij : 1 ≤ i < j ≤ n}, with two vertices, ij and i′j′,
being adjacent if and only if the corresponding closed segments, vivj and vi′vj′ ,
are disjoint in D. See Figure 3.1.

We will look for an optimal proper vertex coloring of the disjointness graph.
That is, given P and the rectilinear drawing D(P ) of Kn, we will obtain D(P ),
see Figure 3.1. Now we obtain an optimal vertex coloring c(D(P )) in order to
color the edges in D(P ) according on c(D(P )). See Figure 3.2.
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v1

v1

v2

v2

v3
v3

v4

v4

v5
v5

1212

1313

1414

1515

2323

2424
2525

3434

3535

4545

D(P ) D(P ′)

D(P )

D(P ′)

Figure 3.1: Given the point sets with 5 elements P and P ′, we obtain the respec-
tive rectilinear drawing of K5, D(P ) and D(P ′), then we obtain the disjointness
graph D(P ) and D(P ′).

3.2 Coloring the edges in the drawing.

Let c be a proper vertex coloring of D(P ). We will abuse notation by denoting
as c(P ) the coloring of the drawing D(P ), instead of c(D(P )). Also for Q ⊂ P
we will use c(Q) to denote the edge coloring, of the complete graph with vertices
in Q, induced by c. For an edge e, c(e) will denote the color that c assigns to
e. We will denote by |c(P )| the number of colors in c. In Figure 1.3 we show
proper colorations of the three different drawings of K5. In the following, by
coloration we will mean proper coloration.

We will say that the coloration c, of P , is optimal, if |c(P )| = χ(D(P )), that
is, if |c(P )| = min{|c(P )| : c is a coloration of P}. In general, the bounds for
the number of colors in any optimal coloration among all n–point sets are:

L(n) := min{|c(P )| : P is an n point set and c is optimal}
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D(P ′)

D(P )
D(P ′)

Figure 3.2: Every coloring of D(P ) and D(P ′) induces a proper edge coloring
on the drawing D(P ) and D(P ′) respectively.

and

U(n) := max{|c(P )| : P is an n point set and c is optimal}.

The following bounds for U(n) were established in [3]:

5
⌊n

7

⌋

≤ U(n) ≤ min

{

n− 2, n+
1

2
−

⌊log logn⌋

2

}

.

In Figure 3.3 we show optimal colorations of K6 for each point set.

For the case in which P is in convex position, the exact value of any optimal
coloration c of P is known. The upper bound is given by J. Jonsson [17]. Later
R. Fabila and D. Wood [9] prove that this is in fact the lower bound. Write

18



Figure 3.3: Drawings of K6 colored optimally. Observe that the dotted edge
cannot be colored red, blue or green.

f(n) := n−

⌊

√

2n+
1

4
−

1

2

⌋

. (3.1)

As far as we know, the family C of the points sets in convex position is the
only for which the exact value of any optimal coloration is known for every
P ∈ C. Our goal in this thesis is to determine the exact value of |c(Q)| for Q,
an element of the family V, of the double chain points sets. We remark that if
Q ∈ V and c is an optimal coloration of Q, then |c(Q)| can be signifficatively
bigger than f(n).

An integer function will be very used in this paper is the following:

g(n) := max

{

i : i ∈ Z
+,

(

i
2

)

≤ n

}

. (3.2)

Unless otherwise is stated, for the rest of this thesis, f(n) is as in (3.1) and
g(n) is as in (3.2).

As we mentioned, this problem was introduced first by Araujo, Dumitrescu,
Hurtado, Noy and Urrutia in [3], as geometric analog of the Kneser graph. We
recall that the Kneser graph KG(n; k) has as vertices all the k-subsets of a set
of n elements; two vertices are adjacent if their respective k-subsets are disjoint.
Obviously, in our version, we work with k = 2, so U(n) and L(n) will be stated
as

L(n) = min{χ(D(P )) : P is an n point set}
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and

U(n) := max{χ(D(P )) : P is an n point set}.

A chromatic class S of c is a star if its corresponding edges in D share a
unique vertex, which is called the apex of S. If S consists of exactly one edge,
then any of its endpoints can be the apex of S. If v is a vertex of P and S is
a star of c having v as an apex, then we will say that v is an apex of c. Any
chromatic class of c that is not a star, is a thrackle. See Figure 3.4.

v1

v2v3

v4

12

13

14

23

24

34

Figure 3.4: Coloring of a drawing of K4 induced by a coloring of its disjointness
graph. We find a blue thrackle and two stars.

3.3 The value of χ(D(Cn))

We will denote as Cn to the set of vertices of a convex n-gon and we will assume
that its elements are labelled as v1, v2, ..., vn, consecutively around conv(Cn).
We give the construction, due to Jonsson [17], to get an optimal coloring of the
edges in D(Cn).

Let i, j be integers with 1 ≤ i < j ≤ n. A polyomino is a finite subset of
Z
2. For later convenience, we adopt the matrix convention for indexing rows

and columns in Z
2; row i is just below row i − 1, column j is just to the right

of column j − 1, and ij refers to the lattice point in row i and column j. We
identify the edge vivj with the lattice point ij, which we represent as a unit
square. In this manner, we may represent all the edges in Kn in the polyomino
as illustrated on the left in Figure 3.5.
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Figure 3.5: Diagram representing the edges of K7. The ij cell on the diagram
represents the edge vivj on the drawing, always 1 ≤ i < j ≤ n.

We will have that any two distinct edges vivj and vi′vj′ are disjoint if

i) j′ < i,

ii) j < i′,

iii) i′ < i < j < j′ or

iv) i < i′ < j′ < j.

See Figure 3.6 left. The edges colored gray, green, blue and red are as in
case i), ii), iii), and iv) respectively. Equivalently, vivj and vi′vj′ have a
common point if and only if

i) i ≤ i′ ≤ j ≤ j′ or

ii) i′ ≤ i ≤ j′ ≤ j.

See Figure 3.6 right. The dashed and dotted edges are as in case i) and ii)
respectively.

21



vivi

vjvj

vnvn

Figure 3.6: Left. There are four cases (colored gray, green, blue and red) where
the edges are disjoint from the (black) edge vivj . Right. There are two cases of
edges (dashed and dotted) having a common point with the (black) edge vivj .

Two edges vivj and vi′vj′ are in different chromatic class if i′j′ lies in the
colored regions in the diagram shown on Figure 3.7 left. Equivalently, two edges
vivj and vi′vj′ can be in the same chromatic class, if i′j′ lies in the colored region
in the diagram shown in Figure 3.7 right.

i

i

i

ij

j

j

j

Figure 3.7: Left. The gray, green, blue and red regions keep the cells in different
chromatic classes from the ij cell. Even more, the respective cells of the gray,
green, blue and red edges, in Figure 3.6, lie in the respective colored region.
Right. There are two regions where the cells can be on the same chromatic
class of ij. Even more, the respective cells of the dotted and the dashed edges,
in Figure 3.6, lie in the lightgray and the darkgray region respectively.

Clearly, the bigger chromatic classes, the fewer colors we use.

Erdős proved in [7] that every maximal thrackle with n vertices has at most
n edges. In the polyomino, every thrackle with n edges will be represented as
a path of n consecutive cells going only downwards or rightwards starting and
finishing in the same value i, 2 ≤ i ≤ n− 1. See Figure 3.8.
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Figure 3.8: The red and blue paths on the diagram represent in D(C7) a red and
blue thrackle respectively. We can see that we need two more colors to color all
the remaining edges.

Observe that any two paths in the diagram share at least one cell. Hence

we have that k paths cover at most kn−

(

k
2

)

cells. Using the smallest number

of paths as possible, to cover all cells, we must have that

kn−

(

k
2

)

≥

(

n
2

)

.

Solving the quadratic equation, we get that k ≥ f(n). We state several elemen-
tary, but useful, results for the rest of the work.

Proposition 15 Let i,m, and r be positive integers with 1 ≤ r < i.

(I) f(m) = m− g(m) + 1.

(II) m =

(

i
2

)

if and only if f(m) = f(m− 1).

(III) If m =

(

i
2

)

+ r, then f(m− 1) = f(m)− 1.

Proof: We show separately these assertions.

(I) The required equation is Theorem 1.1 in [17].
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(II) Since m =

(

i
2

)

, then g(m) = i and g(m − 1) = i − 1. Using these

equalities in (I) we get, respectively, f(m) = m − i + 1 and f(m − 1) =
(m− 1)− (i − 1) + 1 = m− i+ 1. Therefore, f(m) = f(m− 1).

Conversely, let j = g(m − 1) and i = g(m). By definition of g, we have

that

(

j
2

)

≤ m−1 <

(

j + 1
2

)

and

(

i
2

)

≤ m. From (I) and our hypothesis

f(m) = f(m− 1), it follows that j + 1 = i. Substituting this in m− 1 <
(

j + 1
2

)

we obtain that m− 1 <

(

i
2

)

≤ m. So it must be that m =

(

i
2

)

.

(III) From m =

(

i
2

)

+ r and 1 ≤ r < i it follows that g(m) = i = g(m − 1).

Again, these equalities and (I) imply, respectively, that f(m) = m −
g(m) + 1 and f(m− 1) = (m− 1)− g(m− 1)+ 1 = m− g(m). Therefore,
f(m− 1) = f(m)− 1.

Our next result is a direct consequence of (II) and (III) in Proposition 15.

Lemma 16 Let i be a positive integer. Then

f(n+ 1) =







f(n) if n =

(

i
2

)

− 1

f(n) + 1 otherwise

and hence f(n+ k) ≤ f(n) + k, for any nonnegative integer k.

Proposition 17 Let c be an optimal coloring of D(P ). If S1, . . . , Sr are distinct
stars of c, then they have distinct apexes.

Proof: For i ∈ {1, ..., r}, let vi be the apex of Si. Seeking a contradiction,
suppose that there are distinct i, j ∈ {1, ..., r} such that vi = vj . Thus Si ∪ Sj

can be considered as a star with apex vi, and it can be colored with one color,
producing a new coloring of D(P ) with less colors than |c|, which contradicts
the optimality of c.

Proposition 18 Let c be an optimal coloring of D(P ), and let S1, . . . , Sr be r
distinct stars of c with respective apexes v1, . . . , vr. Then for i ∈ {1, ..., r}, we
can extend every Si until it reaches n− i edges in such a way that the resulting
coloring c′ of D(P ) is also optimal.
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Proof: For i ∈ {1, ..., r}, let ei be an edge of Si. We obtain c′ by modifying c as
follows: color with c(er) all the edges of D(P ) which are incident with vr, next
color with c(er−1) all the edges of D(P ) which are incident with vr−1, and so
on. From Proposition 17 this procedure is well defined. Clearly, the resulting
coloration c′ of D(P ) is proper and has at most |c| colors. In particular, note
that in c′ the number of edges of D(P ) having color c(ei) is exactly n− i.

Proposition 19 Let c be an optimal coloring of D(P ). If S1, . . . , Sr are distinct
stars of c, and for i = 1, . . . , r, vi is an apex of Si, then

χ(D(P \ {v1, . . . , vr})) = χ(D(P ))− r.

Proof: By Proposition 17 we may assume that vi 6= vj for any i, j ∈ {1, ..., r}
with i 6= j, and by Proposition 18 that S1 has n− 1 edges. Then, if we delete v1
and all its incident edges, the remaining graph D(P \ {v1}) no longer has edges
of S1. So |c(D(P \ {v1}))| ≤ |c(D(P ))| − 1 = χ(D(P )) − 1.

Now, if |c(D(P \ {v1}))| < χ(D(P )) − 1, then there exists a coloration c′ of
D(P \ {v1})) with at most χ(D(P ))− 2 colors. Thus c′ together with S1 give us
a coloration of D(P ) with at most χ(D(P ))− 1 colors, which again contradicts
the optimality of c. Hence |c(D(P \ {v1}))| = χ(D(P ))− 1.

By repeating the previous reasoning for v2, . . . , vr we can establish

χ(D(P \ {v1, v2, . . . , vr})) = χ(D(P ))− r,

the desired equality.

Proposition 20 Any optimal coloration of D(Cn) has no stars if and only if

n =

(

g(n)
2

)

.

Proof: For brevity, let i := g(n). Assume that every optimal coloration ofD(Cn)
has no stars. Let c be an optimal coloration and suppose that |c(D(Cn\{u}))| <
|c(D(Cn))|, for some u ∈ Cn. From c(D(Cn \{u})) we can obtain a coloration c′

of D(Cn) by adding a star with apex u such that |c′| ≤ |c|. This contradicts the
hypothesis that there are no optimal colorations with stars. So we must have
that |c(D(Cn))| = |c(D(Cn \ {u}))| for any u ∈ Cn. That is, f(n) = f(n − 1).

Again, this and Lemma 16 imply that n =

(

i
2

)

.

Now we suppose that n =

(

i
2

)

. Let c be an optimal coloration ofD(Cn), and

suppose that it has a star S with apex s. Then |c(D(Cn \ {s}))| = f(n)− 1, by
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Propositions 19. SinceD(Cn−1) = D(Cn\{s}), then |c(D(Cn\{s}))| = f(n−1),
and hence f(n) − 1 = f(n− 1). On the other hand, from Lemma 16 we know
that f(n) = f(n− 1), which contradicts previous equality. Therefore, c cannot
have stars.

Proposition 21 If r = n −

(

g(n)
2

)

, then the number of stars in any optimal

coloring of D(Cn) is at most r.

Proof: The case r = 0 is given in Proposition 20. So we may assume that
r > 0. We derive a contradiction from the assumption that there exists an
optimal coloration c of D(Cn) containing r + 1 distinct stars, say S1, . . . , Sr+1.
By Proposition 18 we may assume that Si has exactly n − i edges, for i ∈

{1, ..., r, r+1}. In particular, observe that Sr+1 has n− r− 1 =

(

g(n)
2

)

− 1 ≥ 2

edges.

Let W = {v1, . . . , vr} be the set of apexes of S1, . . . , Sr. By Proposition 19
we know that

χ(D(Cn \W )) = χ(D(Cn))− r.

The last equality and the fact |c(D(Cn \ W ))| ≤ χ(D(Cn)) − r imply that
c(D(Cn \ W )) is an optimal coloration for D(Cn \ W ). On the other hand,

from the facts Cn−r = Cn \ W and n − r =

(

g(n)
2

)

=

(

g(n− r)
2

)

, and the

Proposition 20, we can conclude that c(D(Cn \W )) cannot have any star. This
contradicts that Sr+1 is a star of c(D(Cn \W )).

Figure 3.9: Optimal colorings for K6, K7, and K8 with r stars. Here i = 4, so
n = 6 + r, for r = 0, 1, 2.

For the nex result we will use the following theorem.
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Theorem 22 (Theorem 2 in [9]) For every set P of n points in convex and
general position, the union of k maximal thrackles on P has at most

kn−

(

k
2

)

edges.

Proposition 23 Any optimal coloration of D(Cn) has at most one chromatic
class consisting of a single vertex.

Proof: Seeking a contradiction, suppose that Cn is a counterexample of mini-
mum order. Then there exists an optimal coloration c of D(Cn) which contains
two chromatic classes S1 and S2 such that S1 = {v1} and S2 = {v2} where v1
and v2 are distinct vertices of D(Cn). In other words, for i ∈ {1, 2} we have
that c(vi) 6= c(u) for any vertex u in D(Cn) \ {vi}.

The minimality of Cn and Proposition 19 imply that S1 and S2 are the only
stars of c. As |c(Cn)| = f(n), and that there are only two stars, the number
of thrackles in c will be k = f(n) − 2. Let T1, . . . , Tk be the set of all such
thrackles. From Theorem 22, we know that the number of vertices of D(Cn)

in T1 ∪ · · · ∪ Tk is at most kn −

(

k
2

)

. Since T1, . . . , Tk, S1 and S2 are all the

chromatic classes of c, we have that kn−

(

k
2

)

+ 2 ≥

(

n
2

)

.

From previous inequality, we get that (n−k)2 ≤ n+k+4. From Proposition
15 (I) we know that k = n−g(n)−1. Substituting this in the previous inequality,

we obtain that (g(n)+1)2 ≤ 2n−(g(n)+1)+4. That is,

(

g(n) + 2
2

)

≤ n+2. On

the other hand, by our definition of g(n) we have that

(

g(n) + 1
2

)

> n and that

g(n) ≥ 3, hence

(

g(n) + 2
2

)

=

(

g(n) + 1
2

)

+ g(n) + 1 ≥ n+ 4, a contradiction.

Proposition 24 Let c be a proper coloring of D(P ), and let C := v1v2...vrv1
be a cycle of P of length r ≥ 3. If any two distinct edges of C receive distinct
color, and each edge e of C is not crossed by any other edge of P with color
c(e), then

χ(D(P \ {v1, v2, ..., vr})) ≤ |c(D(P ))| − r.

Proof: Let e be an edge of C with endpoints vi and vi+1. Since any edge of P
with same color than e has a common endpoint with e, then P \ {vi, vi+1} has
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no more edges of color c(e). Then P \ {v1, . . . , vr} has no edges of color c(e′)
for any edge e′ of C. Therefore,

χ(D(P \ {v1, v2, ..., vr})) ≤ |c(D(P ))| − r.

3.4 The value of χ(D(Vp,q))

Our goal in this section is to determine χ(D(P )) for the case in which P is the
double chain Vp,q.

We recall that for p and q positive integers with p ≥ q, the double chain
Vp,q is a (p+ q)-point set, with a1, . . . , aq on the upper line L1 and b1, . . . , bp on
the lower line L2. Both lines are convex with opposed concavity. Besides, for
every i and j the line connecting ai and aj leaves all points of L2 below, and the
line connecting bi and bj leaves all points of L1 above. The numbering of the
points in both lines is from left to right. See Figure 3.10. For the rest of this
section, we shall use Aq and Bp to denote the sets {a1, . . . , aq} and {b1, . . . , bp},
respectively.

a1
a2 a3 a4

a5

b1

b2
b3 b4 b5

b6
b7

Figure 3.10: V7,5.

We will prove that f(p) + q colors are necessary and sufficient for coloring
D(Vp,q).

Proposition 25 Let c be a proper coloration of D(Vp,1) and let i ∈ {1, 2, ..., p}.
If neither a1 nor bi is an apex of c and p ≥ 2, then the chromatic class of c
containing the edge a1bi is a triangle of the form a1bibja1 for some bj ∈ Bp\{bi}.

Proof: Let a1 and bi as in the statement of the proposition, and let e be the
edge with endpoints a1 and bi. Because none of a1 and bi is apex of c, then e
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belongs to a thrackle T . Since e is not crossed by any other edge with endpoints
in Vp,1, then every edge of T \ {e} must be incident with exactly one of a1 or bi
and, hence, |T | ≥ 3.

For v a point of Vp,1, let dT (v) be the number of edges of T incident with v.
From the location of the points of Vp,1 and the fact that T is not a star, it is
easy to see dT (a1) ≤ 2 and dT (bi) ≤ 2.

Since |T | ≥ 3 and dT (a1) ≤ 2, then T contains an edge e′ with endpoints bi
and bj for some j 6= i and, hence, e and e′ are the only edges of T incident with
bi. This and |T | ≥ 3 imply that T \ {e} contains an edge e′′ which is incident
with a1. Since no edge of the form a1br crosses e′, then e′′ must be incident
with bj.

Lemma 26 If p ≥ 3, then χ(D(Vp,1)) = 1 + f(p).

Proof: Observe that if we color D(Vp,1) by cloring Bp optimally, using f(p)
colors, and a1 being an apex, we will have that χ(D(Vp,1)) ≤ 1 + f(p). In
Figure 3.11 we color V6,1 to illustrate this idea.

Figure 3.11: Coloring of D(V6,1), using 1 + f(6) colors, by coloring optimally
B6 and a1 as an apex. Similarly, for p ≥ 3, we can color D(Vp,1) using 1+ f(p)
colors, by coloring optimally Bp and a1 as an apex.

Now we prove that χ(D(Vp,1)) ≥ 1 + f(p). Let c be an optimal coloring of
D(Vp,1). We may assume that c, restricted to Bp uses f(p) colors, as otherwise
we are done.

First we show that χ(D(V3,1)) = 1+ f(3) = 2. A proper coloring of D(V3,1)
is given in Figure 3.12, showing that χ(D(V3,1)) ≤ 2. On the other hand, since
the segments a1b2 and b1b3 are disjoint, then they cannot receive the same color
in any proper coloring of D(V3,1). This implies that χ(D(V3,1)) ≥ 2, as required.

Assume that p ≥ 4. Now we will take χ(D(Vp−1,1)) = 1 + f(p − 1) as our
induction hypothesis.

If a1 is an apex of c, Proposition 19 implies |c(D(Vp,1))| = |c(D(Bp))|+ 1 =
f(p)+1, as desired. Similarly, if some bi ∈ Bp is an apex, Proposition 19 implies
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a1

b1

b2

b3

Figure 3.12: A proper coloring ofD(V3,1), it uses two colors, that is χ(D(V3,1)) ≤
2. On the other hand, since a1b2 and b1b3 are disjoint, they must have different
color, that is χ(D(V3,1)) ≥ 2. Hence χ(D(V3,1)) = 2.

|c(D(Vp,1))| = |c(D(Vp,1 \ {bi}))| + 1. As Vp,1 \ {bi} = Vp−1,1, then Proposi-
tion 19, the induction hypothesis, and Lemma 16 imply that |c(D(Vp,1))| =
|c(D(Vp−1,1))|+ 1 = 1 + f(p− 1) + 1 ≥ f(p) + 1, as desired.

Thus we may assume that c has no stars and, hence, c has no apexes. In
particular, this implies that there are two distinct edges e and e′ such that both
are incident with a1 and c(e) 6= c(e′). By applying Proposition 25 to both e and
e′, we have that the chromatic classes of c containing e and e′ are, respectively,
two edge disjoint triangles of the form a1bibja1 and a1bi′bj′a1. But this implies
that bibj (respectively, bi′bj′) is the only edge between points in Bp that has
color c(e) (respectively, c(e′)). See Figure 3.13. This and Proposition 23 imply
|c(D(Bp))| ≥ 1 + f(p), a contradiction.

a1

bi
bjbj′

bi′

Figure 3.13: If c is an optimal coloration of D(Vp,1) without stars, then the
chromatic class containing any edge incident with a1 is a triangle of the form
a1brbr′a1 for some br, br′ ∈ Bp.

Now we can prove the main result of this chapter. We will find the exact
number of colors needed to color the edges in D(Vp,q).
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Theorem 27 Let p and q be positive integers with p ≥ 3 and p ≥ q. Then

χ(D(Vp,q)) = q + f (p) .

Proof: Let D be the rectilinear drawing of Kp+q induced by Vp,q.

First we show that χ(D(Vp,q)) ≤ q + f (p): color the edges of Bp with f(p)
colors [17]. For each of the q vertices in Aq, color the edges incident to them,
that have not been colored yet, with a new color. This yields a proper coloring
of D(Vp,q) with q + f(p) colors. See Figure 3.14.

Figure 3.14: We will color D(V7,5) by coloring optimally B7 and every element
in A5 being an apex. At the end, we will use at most 5 + f(7) colors. We
generalize this idea to color D(Vp,q) using at most q + f(p) colors.

In order to apply induction, we prove that χ(c(D(V3,2))) = 3: observe that
if we color optimally B3 and a1 and a2 being apexes, we color D(V3,2) with at
most three different colors. See Figure 3.15 left. On the other hand, assume
that c(a1b1) = blue and c(a2b3) = red. See Figure 3.15 right. Lets consider
c(a1a2). We have three cases:

� c(a1a2) is different from blue and red. Clearly χ(D(V3,2)) ≥ 3.

� c(a1a2) = blue. We must have that c(b1b2) cannot be blue nor red. Hence
we must use a different color, yielding that χ(D(V3,2)) ≥ 3.

� c(a1a2) = red. Now c(b2b3) cannot be blue nor red. Hence we must use a
different color, again, yielding that χ(c(D(V3,2))) ≥ 3.

Now we show that χ(D(Vp,q)) ≥ q + f (p). From Lemma 26 the theorem
holds when q = 1 and p ≥ 3. Now we assume that q ≥ 2 and p ≥ 4.

Seeking a contradiction, suppose that Vp,q is a counterexample of minimum
order. That is, suppose that Vp,q is the set such that p+ q is minimum and has
an optimal coloration c which |c(D(Vp,q))| = χ(D(Vp,q)) < q + f(p), with q ≥ 2
and p ≥ 4.
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a1a1 a2a2

b1b1

b2b2
b3b3

Figure 3.15: On the left, we colored optimally B3 and a1 and a2 as stars to
show that c(D(V3,2)) ≤ 3. On the right we colored the edges a1b1 and a2b3 to
show that c(D(V3,2)) uses three different colors.

Case 1. c has a star with apex s. If q = p, then by interchanging the roles of
Aq and Bp if necessary, we may assume without loss of generality that s ∈ Aq.
So, Vp,q−1 = Vp,q \ {s}, and by Proposition 19 we have that χ(D(Vp,q−1)) =
χ(D(Vp,q))− 1 < q + f (p)− 1, contradicting the minimality of Vp,q.

Similarly, if s ∈ Bp, then q < p (by our previous assumption) and Vp−1,q =
Vp,q \ {s}. Then by Proposition 19 we get χ(D(Vp−1,q)) = χ(D(Vp,q)) − 1 <
q+f (p)−1. Since χ(D(Vp−1,q)) = q+f(p−1), then q+f(p−1) < q+f (p)−1,
which contradicts Lemma 16.

Case 2. c has no stars. Let E := {a1b1, b1bp, bpaq, aqa1} be the set of edges
in conv(Vp,q), and γ be the number of chromatic classes of c restricted to E.
Clearly γ ∈ {2, 3, 4}. It is easy to see that if γ = 2, then at least one of such two
chromatic classes is a star of c. See Figure 3.16. We may assume that γ ∈ {3, 4}.

...

Figure 3.16: If c(a1b1) = c(b1bp) and c(a1aq) = c(aqbp), then c(a1bp) makes
b1 or aq (or both) an apex. Here aq is an apex, hence we apply induction on
Vq−1,p.
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� γ = 4. Then χ(D(Vp,q \ {a1, b1, aq, bp})) < q+ f(p)− 4, by Proposition 24
and the definition of c. Since Vp−2,q−2 = Vp,q \ {a1, b1, aq, bp}, see Figure
3.17, and χ(D(Vq−2,p−2)) = q − 2 + f(p − 2), then q − 2 + f(p − 2) <
q + f(p)− 4, which contradicts Lemma 16.

Figure 3.17: When the edges of conv(Vp,q) are colored with four different colors,
we can remove the vertices in conv(Vp,q) to eliminate four chromatic classes.

� γ = 3. Then exactly two edges in conv(Vp,q) are of the same color; more-
over these edges share an endpoint. Without loss of generality assume
that their common endpoint is a1. Assume that a1aq and a1b1 are colored
blue. Since all the chromatic classes in c are thrackles, then the edge b1aq
must also be colored blue. Note that any other blue edge must be incident
to a1 and its other endpoint must be in Bq. Now we recolor blue all the
edges incident with a1 and having the other endpoint in Bq. See Figure
3.18.

a1 a1 a2

a2

aq

Aq

BpBp

b1b1 bpbp
bp−1

bp−2

Figure 3.18: Here we illustrate the only two (up to symmetry) possibilities for
the case γ = 3. On the left we have the case in which q ≥ 3. On the right we
have the case in which q = 2.

First let us assume that q ≥ 3. The proof for the case when the edges
in conv(Vp,q) having same color sharing the one vertex in Bq is totally
analogous. Lets consider a2. We have that the edge a1a2 does not cross
any other edge, and in particular a1a2 cannot be blue. Suppose that a1a2
is red. If b1a2 is also colored red, then the red chromatic class is a star, a
contradiction. Thus b1a2 is not red. Since b1a2 cannot be colored blue, we
assume that it is colored gray. See Figure 3.18 (left). Since b1a2 is crossed
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only by blue edges, then any other gray edge must be incident to b1 or
a2. Also note that every red edge must be incident to a1 or a2. These
observations together imply that c when restricted to Vp,q \{a1, a2, b1} is a
coloring of D(Vp,q \{a1, a2, b1}) with less than q+f(p)−3 colors. Observe
that Vp,q \ {a1, a2, b1} = Vq−2,p−1. By Proposition 16, q + f(p) − 3 ≤
(q−2)+f(p−1); this contradicts the minimality of p+q and also contradicts
Lemma 16.

Now suppose that q = 2. Then Aq = {a1, a2}. By symmetry, we may
assume that color on the edges of conv(Vp,q) are placed as in Figure 3.18
(right), and that a2bp is green. Lets consider bp−1. Observe that bp−1bp
does not cross any other edge, and any edge crossing a2bp−1 is blue. Also
note that a2bp−1 cannot be blue. If a2bp−1 and bp−1bp receive the same
color, different from green, then the chromatic class containing them must
be a star. Similarly, if bp−1a2, bp−1bp and a2bp receive distinct colors, then
we can proceed as in previous paragraph and deduce that Vp−2,q−1 =
Vp,q \{a2, bp−1, bp} is a counterexample that contradicts the minimality of
p+ q.

Thus we may assume that at least one of bp−1a2 or bp−1bp is green. We
claim that both are green. Because a2bp is not crossed by any edge, then
any other green edge must be adjacent to exactly one of a2 or bp. This
and the fact that the green chromatic class is not a star, imply that for
each v ∈ {a2, bp} there exists at least one green edge distinct of a2bp which
is incident with v. Let a2x and bpy be any couple of such green edges.
Clearly, x, y ∈ Bp\{bp}. Since the green edges incident with a2 are crossed
only by blue edges, then we must have that x = y. This and the fact that
at least one of a2bp−1 or bp−1bp is green imply that bp−1 = x = y. This
implies that the green chromatic class consists precisely of a2bp−1, bp−1bp
and a2bp.

Lets consider bp−2. Note that bp−1bp−2 does not cross any other edge, and
that any edge crossing a2bp−2 is blue. Also note that none of a2bp−2 and
bp−2bp can be blue or green. Again, if a2bp−2 and bp−2bp receive the same
color, then the chromatic class containing them must be a star. Thus we
assume that a2bp−2 and bp−2bp have distinct colors. This implies that
the color of at least one of a2bp−2 or bp−2bp is different from the color of
bp−1bp−2. Let v ∈ {a2, bp} such that c(bp−1bp−2) 6= c(bp−2v). Since none
of bp−1bp−2 and bp−2v can be green, then the colors of bp−1bp−2, bp−1v,
and bp−2v are distinct. From this and the fact that any edge crossing
bp−2v is blue or incident with bp−1, it follows that Vp,2 \ {v, bp−1, bp−2}
is a counterexample that contradicts the minimality of p+ q. The result
follows.

Hence χ(D(Vp,q)) ≥ f(p) + q.
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Observe that if p = q = n
2 , then

χ(D(Vn/2,n/2)) =
n

2
+ f

(n

2

)

= n−
⌊

√

n+ 1/4− 1/2
⌋

> f(n).

35



Chapter 4

Convex Decompositions

Theorem 1 take us to the following question: given a positive integer k ≥ 4,
there exists an integer nk such that in any point set with at most nk points on
the plane contains a convex k–gon?

This problem was solved in the affirmative by P. Erdős and G. Szekeres [6]
with the Erdős–Szekeres’ Theorem:

Theorem 28 For every positive integer k there exist an integer nk such that if
n ≥ nk, any n–point set contains a convex k–gon.

This theorem has been studied because of its beauty and because its a great
challenge to find the exact value of nk. More than 60 years passes without
significant changes.

So far, what we know about nk is that:

2k + 1 ≤ nk ≤

(

2k − 5

k − 2

)

+ 2.

The lower bound is obtained in the same paper [6], and the upper bound is
obtained by G. Toth and P. Valtr [20]. It is important to note that the polygon
obtained can contain elements of the point set in its interior.

If a polygon does not contain any element of the point set in its interior, we
say that such polygon is empty.

A well known question is the following: given an integer k, there exists an
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integer hk such that, in any point set with at most hk elements is possible to
obtain an empty k–gon?

Trivially we have that h3 = 3. In Figure 4.1 (left) we can see a 4-point set
without a convex quadrilateral, so h4 ≥ 5, and by Esther Klein’s result h4 = 5.
In Figure 4.1 (right) we can see a 9–point set without convex pentagons, so
h5 ≥ 10. Harborth proved in [13] that h5 = 10.

Figure 4.1: A point set with 4 elements without convex quadrilateral and a
point set with 9 elements without convex pentagon.

J.D. Horton [14] gives point sets arbitrarily large in which there are no empty
heptagons, and hence without empty k–gons for k ≥ 7, showing that hk does
not exist, for k ≥ 7.

After Horton’s result, only remains to find the exact value for h6. This
problem remained open for a long time. M. Overmars [19] try to show that h6

do not exist by constructing point sets arbitrarily large without empty convex
hexagons, but the largest set he found was a 29-point set. Finally T. Gerken
[12] proved that h6 do exist. We only know that 30 ≤ h6 ≤ n9.

In this work we are not interested in the number of vertices of the polygons.
We are interested in shattering conv(P ) with the smallest number of empty
convex polygons with its vertices in P . Here, polygons are considered as its
border together its interior.

Formally, a convex decomposition Γ of P , is a family of convex polygons
Γ = {γ1, γ2, ..., γm} satisfying the following:

(CD1) The vertices of every γi are in P , i = 1, 2, ...,m.

(CD2) Every γi is empty, i = 1, 2, ...,m.

(CD3) γi and γj are interior–disjoint 1 ≤ i 6= j ≤ m.

(CD4) The union γ1 ∪ γ2 ∪ ... ∪ γm is conv(P ).
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Just as a small observation: we can state the Rectilinear Crossing Number
as finding a point set P which minimizes the elements of a family of convex
quadrilaterals only satisfying (CD1). Since we allow elements of P be in the
interior of the quadrilaterals and that they can share their interiors, the family
not necessarily satisfies (CD2), (CD3) and (CD4).

4.1 Convex decompositions starting from a trian-

gulation

Observe that a triangulation of P is a convex decomposition with exactly 2n−
h(P )−2 elements. We are interested in obtaining a convex decomposition which
improves such number.

Let cd(P ) = min{|Γ| : Γ is a convex decomposition of P}, and let cd(n) be
the maximum value of cd among all the n point sets in the plane. Urrutia
[21] conjectured that cd(n) ≤ n + 1, but this was disproved by Aichholzer and
Krasser [1] by showing that cd(n) ≥ n + 2. Later, Garćıa-López and Nicolás
[11] gave a n–point set such that cd(n) ≥ 11n

10 .

Neumann, Rivera and Urrutia [18] show that, for any given n-point set there
exists a convex decomposition with at most 10n−18

7 elements. This bound was
improved by Hosono, [15] by showing that cd(n) ≤

⌈

7
5 (n− 3)

⌉

+ 1.

The previous bounds are existence theorems. Here we show how to obtain
a specific convex decomposition that reaches the 10n

7 bound.

4.2 Convex Decompositions with 10n
7 elements

For the rest of the section we use the following labeling: p1 will be the element
in P with lowest y coordinate (and lowest x coordinate in case of a tie), and
every p ∈ P \{p1}, will be labelled as p2, p3, . . . , pn in their angular order around
p1, see Figure 4.2 (left).

Now we label the elements of the polygonal p3p4 . . . pn−1 as follows: if
conv({p1, pi−1, pi, pi+1}) is a triangle, then we say pi is negative, labeled −.
Otherwise we say pi is positive, labeled +. See Figure 4.2 (right).

We recall that Graham triangulation ΓG(P ) of P is obtained recursively as
follows:

Once that ΓG({p1, . . . , pk−1}) has been costructed, we construct ΓG({p1, . . . ,
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pn pn

pn−1pn−1

p1p1
p2 p2

p3 p3

+

+

+

+
−

− −

Figure 4.2: Labeling elements of P .

pk−1, pk}) by drawing the line segments pkv, for all vertices v of conv({p1, . . . ,
pk−1}), that do not cross any other segment of ΓG({p1, . . . , pk−1, pk}). See
Figure 4.3.

Observe that, at the end of the procedure, ΓG(P ) will have all edges p1pi,
with i = 2, 3, ..., n and all the edges of the form pjpj+1, with j = 2, 3, ..., n− 1.
See Figure 4.3.

p1p1p1

p2p2

pk
pk+1

pnpn

Figure 4.3: Application of Graham’s algorithm to P . Observe that, at the end,
it will get all edges p1pi and pjpj+1, for i = 2, 3, ..., n and j = 2, 3, ..., n− 1.

4.2.1 Using Graham’s triangulation.

We assume that P is now triangulated with Graham’s algorithm. Let A and B
be the subsets of P containing all positive and negative elements respectively.
Notice that A ∪B = P \ {p1, p2, pn}.

Observation 29 If P is the set of vertices of a convex polygon, then cd(P ) = 1.
So, we will assume that all point sets under consideration are different from the
point set in convex position. Then we can assume that B 6= ∅.
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We partition A into its maximal subsets of consecutive positive points, la-
beled A1, . . . , Ak in the angular order around p1. See Figure 4.4 (left). If p3 6∈ A,
then we make A1 = ∅, similarly, if pn−1 6∈ A, then we make Ak = ∅. Also, we
divide B into its maximal subsets of consecutive points. We label them as
B1, . . . , Bk−1, in the angular order around p1. See Figure 4.4 (left). That is,
A = A1 ∪A2 ∪ ... ∪ Ak and B = B1 ∪B2 ∪ ... ∪Bk−1. Observe that k ≤ n

2 .

In [16] it was shown that for a given triangulation T of P , and a given pair of
vertices u, v ∈ P , we can modify T to get a triangulation T ′ containing the edge
uv, by adding uv, removing the edges of T intersecting it, and triangulating
separately the resulting two polygons γ and γ′ sharing the edge uv. We will
modify ΓG as follows:

(C1) For j = 1, 2, . . . , k − 1, suppose that Bj = {pij , pij+1, . . . , pij+rj−1}.
Note that rj > 0 in each case. Now we modify TG, if necessary, by adding the
edge ej := pij−1pij+rj as described in previous paragraph. Let B′

j be the convex
polygon with vertex set {pij , pij+1, . . . , pij+rj−1, pij−1, pij+rj}. Then we remove
any diagonal inside of B′

j . Let B = B′

1 ∪ · · · ∪B′

k−1. See Figure 4.4 (right).

(C2) Also, for every j = 1, 2, . . . , k, if Aj = {pij , pij+1, . . . , pij+rj−1} 6= ∅,
then we remove the edges p1p, for all p ∈ Aj , to obtain the empty convex polygon
defined by Aj ∪ {p1, pij−1, pij+rj}. If A1 = ∅, then we make A′

1 = {p1, p2, p3},
similarly, if Ak = ∅, then we make A′

k = {p1, pn−1, pn}. Let A = A′

1 ∪ · · · ∪ A′

k.
See Figure 4.4 (right).

p2p2

A2
A3

B1

B2

B3

B′

1

B′

2

B′

3

A′

1

A′

2
A′

3A′

4

p1p1 p1

pnpn

Figure 4.4: In this example, k = 4 and A1 = Ak = ∅. After modifying Graham’s
triangulation, according to C1 and C2, we obtain A′

1, B
′

1, A
′

2, B
′

2, A
′

3, B
′

3 and
A′

4.

Let Γ be the convex decomposition obtained after applying (C1) and (C2)
to ΓG(P ), and TB be the set of triangles in Γ with vertex set {p1, pm, pm+1},
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for all pair pm, pm+1 of negative points. See Figure 4.5 (left). Observe that

|TB| =
∑k−1

i=1 (|Bi| − 1).

Let T be the set of triangles contained in conv(P ), which are disjoint from
A∪ B ∪ TB. See Figure 4.5 (right).

B1

B2B3

T
T

Figure 4.5: Here TB = {△p1p10p11} and T = {△p2p4p5,△p2p5p7,△p7p8p12,
△p8p9p12}.

Proposition 30 |T | = n− |B| − h(P ).

Proof: Observe that every A′

i and B′

j contains |Ai|+ 1 and |Bj | triangles of Γ′

respectively. Also, every B′

i is adjacent to |Bi| − 1 triangles in TB. We must
have that

2n− h(P )− 2 =

k
∑

i=1

(|Ai|+ 1) +

k−1
∑

i=1

|Bi|+
k−1
∑

i=1

(|Bi| − 1) + |T |. (4.1)

Since |A| =
∑k

i=1 |Ai|, |B| =
∑k−1

i=1 |Bi| and |A|+ |B| = n−3, then equation
(4.1) will be

2n− h(P )− 2 = |A|+ k + |B|+ |B| − (k − 1) + |T | = n− 2 + |B|+ |T |.

Hence |T | = n− |B| − h(P ), as claimed.

Lemma 31 |Γ| = n+ k − h(P ).
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Proof: Since Γ = A ∪ B ∪ TB ∪ T , then

|Γ| = k + (k − 1) + |TB |+ |T | = n+ k − h(P ). (4.2)

See Figure 4.6.

Since k ≤ n
2 , then |Γ| ≤ 3n

2 − h(P ) [18]. And, if k ≤ 3n
7 , then we prove our

main result.

A′

1

A′

2

A′

3

A′

4

A′

5

A′

6

B′

1

B′

2

B′

3
B′

4

B′

5

T

T

T

p1

p2

pn

Figure 4.6: A point set P with 27 elements, and Γ as described above. Here
k = 6, h(P ) = 5 and A1 = Ak = ∅. Then |Γ| = n+ k − h(P ) = 28.

4.2.2 Obtaining a convex decomposition for 3n

7
< k ≤ n

2

Now assume that 3n
7 < k ≤ n

2 . We use the following notation: if the signs of pi
and pi+1 are different, for any 3 ≤ i ≤ n− 2, then we say that P is a ±–set.

Lemma 32 Suppose that n = 6m+2, for a positive integer m. If P is a ± set
and p3 has label −, then P has a convex decomposition Γ with 4n

3 − h(P ) + 1
elements.

Proof: We will use the following notation: if two given polygons α and β,
of a convex decomposition, share an edge e, we denote α∪β the operation of
combining α and β, that is, we let α∪β := (α ∪ β)− e. We remark that α∪β is
a polygon not necessarily convex.
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We define the subsets Qi = {p1, pi, pi+1, ..., pi+6}, for i = 2, 8, . . . , n− 6. We
will obtain a convex decomposition Γi for every Qi and use it to get a convex
decomposition of P . Observe that, since in every Qi there are three negative
points, then conv(Qi) has 3, 4 or 5 vertices.

We analyze only the case when i = 2, that is, Q2 = {p1, p2, ..., p8}. The
analysis for the remaining Qi sets can be handled analogously. We divide in
cases according on the number of vertices in conv(Q2).

Let ∆1 := △p1p7p8, ∆2 := △p6p7p8, S := �p1p5p6p7, and T be the interior
of the triangle △p1p2p4. See Figure 4.7.

Case 1. Suppose that conv(Q2) is the pentagon p1p2p4p6p8. Lets consider the
segment p2p5 and the line ℓ containing p5 and p6, directed from p5 to p6. Make
L and U the left and right open half plane defined by ℓ respectively. Now we
divide T .

If p2 ∈ U , then we make T1 the region L∩T , T2 the region in T contained in
the angle formed by p2p5 and ℓ. T3 will be the region T − (T1 ∪ T2). See Figure
4.7 (left).

On the other hand, if p2 ∈ L, then T3 will be the region U ∩ T , T2 the
region of T contained in the angle formed by p2p5 and ℓ. T1 will be the region
T − (T3 ∪ T2). See Figure 4.7 (right).
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p7p7
p8p8

∆1∆1

∆2∆2

SS

Figure 4.7: Case when conv(Q2) is a pentagon. We define the regions T1, T2

and T3. We will use ∆1 := △p1p7p8, ∆2 := △p6p7p8, and S := �p1p5p6p7.

Case 1.1. Suppose that p3 ∈ T1. We make α := S∪△p1p3p5 and β :=
�p2p4p5p3 to get a convex decomposition Γ2 of Q2 with six elements Γ2 :=
{∆1,∆2,△p1p2p3,△p4p5p6, α, β}.

Observe that the pentagon and the quadrilateral α and β are convex since
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p3 ∈ L, and p3 and p4 are on opposite sides with respect to p2p5.

Case 1.2. Suppose that p3 ∈ T2, and hence ℓ leaves p2 and p3 in the same
half plane. If p2 and p3 are in U , then we make α the pentagon with ver-
tex set {p2, p4, p6, p5, p3}, and so Γ2 = {∆1,∆2,△p1p2p3,△p1p3p5, S, α} is the
required.

If p2 and p3 are in L, we make β the hexagon S∪�p1p2p3p5, and so Γ2 =
{∆1,∆2,△p2p3p4,△p3p4p5,△p4p5p6, β}.

Case 1.3. Suppose that p3 ∈ T3. In this case α := �p1p2p3p5 is always
convex. We let β := �p5p3p4p6 and so Γ2 := {∆1,∆2, S, α, β,∆p2p3p4} is the
required.

Case 2. conv(Q2) is a quadrilateral. Then conv(Q2) = �p1p2p6p8 or conv(Q2) =
�p1p2p4p8. By symmetry, we only analyze when conv(Q2) = �p1p2p4p8. We
proceed as in Case 1. Roughly speaking, we will add △p4p6p8 to the previous
sets Γ2:

Let ℓ, and the regions L, U , T1, T2, T3 as in Case 1. Also let ∆3 := △p4p6p8.
See Figure 4.8.
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T2
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T3

T3

p1 p1

p2p2

p4p4

p5p5
p6

p6

p7p7

p8p8

∆1∆1

∆2∆2

∆3
∆3

SS

Figure 4.8: Case when conv(Q2) is the quadrilateral �p1p2p4p8. We define the
regions R1, R2 and R3. Also we will use ∆3 := △p4p6p8.

Case 2.1. Suppose that p3 ∈ T1. We make α := S∪△p1p3p5 and β :=
�p2p4p5p3. Note that Γ2 := {∆1,∆2,∆3,△p1p2p3,△p4p5p6, α, β} is the re-
quired convex decomposition.

Observe that the pentagon and the quadrilateral α and β are convex since
p3 ∈ L, and p3 and p4 are on opposite sides on p2p5.
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Case 2.2. Suppose that p3 ∈ T2, and hence ℓ leaves p2 and p3 in the same
half plane. If p2 and p3 are in U , then we make α the pentagon with vertex
set {p2, p4, p6, p5, p3}, and so Γ2 = {∆1,∆2,∆3,△p1p2p3,△p1p3p5, S, α} is the
required.

If p2 and p3 are in L we make β the hexagon S∪�p1p2p3p5, and so Γ2 =
{∆1,∆2,∆3,△p2p3p4,△p3p4p5,△p4p5p6, β}.

Case 2.3. Suppose that p3 ∈ T3. In this case, again, α := �p1p2p3p5 is always
convex. We let β := �p5p3p4p6 and so Γ2 := {∆1,∆2,∆3,△p2p3p4, S, α, β} is
the required.

Case 3. Suppose that conv(Q2) is a triangle. Indeed, suppose that conv(Q2) =
△p1p2p8. If �p2p4p6p8 is convex, then we just make Γ2 = {△p1p2p3,△p2p3p4,
△p4p5p6,∆1,∆2, S,�p1p3p4p5,�p2p4p6p8}. See Figure 4.9 (left).

If �p2p4p6p8 is not convex, then by simmetry we can assume that p4 is in
the interior of △p2p6p8.

Let ℓ and ℓ′ be the rays directed from p8 to p4 and p8 to p6 respectively.
Now we divide T as follows: R1 will be the region of T on the right side of ℓ′,
R3 will be the region of T on the left side of ℓ, and R2 will be the interior of
the region T − (R1 ∪R3). See Figure 4.9 (right).

Similarly as in previous cases, we make a case analysis on the location of p3.

Case 3.1. Suppose that p3 ∈ R1. Also suppose that p5 is in interior of
�p2p4p6p3. We have that the pentagon α := p1p3p5p6p7 will be convex.

If p5 is in the left side of ℓ′, then β := �p8p6p5p4 will be convex, so we make
Γ2 = {∆1,∆2,△p1p2p3,△p2p4p8,△p3p2p4,△p3p4p5, α, β}.

If p5 is on the right side of ℓ′, then γ := �p2p4p6p5 will be convex. So Γ2

will be {∆1,∆2,∆3,△p1p2p3,△p2p4p8,△p2p5p3, α, γ}.

Now suppose that p5 is not in interior of �p2p4p6p3. Let α be the pentagon
p2p4p6p5p3. If α is convex, then Γ2 := {∆1,∆2,∆3,△p1p2p3,△p1p3p5,△p2p4p8,
S, α}. If α is not convex, then the quadrilateral β := �p1p2p3p5 will be. Then
Γ2 := {∆1,∆2,△p2p4p8,△p2p4p3,△p3p5p6, S, β,�p3p4p8p6, }.

Case 3.2. Suppose that p3 ∈ R2. Let α := p3p2p4p6p5. If α is convex, then
Γ2 will be the set {∆1,∆2,∆3,△p2p4p8,△p1p2p3,△p1p3p5, S, α}.

On the other hand, if α is not convex, then Γ2 will be the set {∆1,∆2,△p2p8p4,
△p3p6p5,△p3p2p4,�p1p2p3p5,�p3p4p8p6, S}.
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And finally.

Case 3.3. Suppose that p3 ∈ R3. Let γ := �p8p4p3p2 and simply make
Γ2 := {∆1,∆2,∆3,△p1p2p3,△p4p6p5, γ, S,�p1p3p4p5}.

p1 p1

p2p2

p3

p3

p4

p4

p5
p5

p6 p6
p7

p7

p8 p8

R1

R2

R3

SS

Figure 4.9: Case when conv(Q2) is the triangle △p1p2p8. We divide in two cases
according to �p2p4p6p8 if it is convex or not.

Now, for j = 3, 4, 5, let Cj be the set Cj = {Qi : conv(Qi) is a j − gon}. To
obtain the desired convex decomposition Γ of P we proceed as follows:

(D1) For every Qi, with i = 2, 8, . . . , n−6 obtain Γi as described in previous
cases.

(D2) Triangulate the region(s) of conv(P ) disjoint from Γ2 ∪Γ8 ∪· · · ∪Γn−6,
and let R be the set of such triangles.

Observation 33 For i = 8, 14, ..., n−6, the edges pi−1pi and pipi+1 are always
part of a polygon in Γi−6 and Γi respectively.

(D3) For i = 8, 14, ..., n− 6, let αi−1 be the polygon on Γi−6 containing the
triangle △p1pi−1pi and let αi+1 be the polygon on Γi containing the triangle
△p1pipi+1, observe that αi−1 and αi+1 share the edge p1pi. Let γi = αi−1∪αi+1.
By Observation 33, αi−1 contains the edge pi−1pi and αi+1 contains the edge
pipi+1, so γi is well defined, and always convex.
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Claim 34
|R| =

n

2
− h(P )− 2|C3| − |C4|+ 1.

Proof of Claim 34. Consider a triangulation of P by triangulating every Qi

and considering all the triangles in R. Observe that every triangulation of Qi

has 9, 10 and 11 elements if Qi belongs to C5, C4 and C3 respectively. Since
m = |C3|+ |C4|+ |C5|, then

2n− h(P )− 2 = 9|C5|+ 10|C4|+ 11|C3|+ |R| = 9m+ |C4|+ 2|C3|+ |R|.

The last equation and the fact that m = n−2
6 imply that |R| = n

2 − h(P ) +
1− |C4| − 2|C3|.

Now we calculate |Γ|. Observe that if Qi is in C5, C4 or C3, then the
corresponding convex decomposition will have 6, 7 or 8 elements respectively.
So, when we obtain every Γi according to (D1) and join m − 1 of them as
described in (D3) we get 6|C5|+7|C4|+8|C3|− (m− 1) = 5m+1+ |C4|+2|C3|
polygons. Now, considering those in R we have that

|Γ| = 5m+ 1 + 2|C3|+ |C4|+ |R| =
4n

3
− h(P ) + 1.

Corollary 1 Let m be a positive integer, r ∈ {1, 2, 3, 4, 5}, and n = 6m+2+ r.
If P is a ± set and p3 has label −, then P has a convex decomposition Γ with
at most 4n

3 − h(P ) + 5 elements.

Proof: To obtain a convex decomposition Γ′ of P we make P ′ = P\{pn, .., pn−r+1}.
Let h′ be the number of vertices in conv(P ′). Then we apply Lemma 32 on P ′,
and triangulate the interior of the region conv(P )−conv(P ′), with h′−h(P )+2r
triangles.

That produces a convex decomposition Γ′ of P with (4(n−r)
3 −h′+1)+(h′−

h(P ) + 2r) = 4
3n+ 2

3r − h(P ) + 1 elements. Since r ≤ 5, then

|Γ′| <
4

3
n− h(P ) + 5.

Corollary 2 Let m be a positive integer, r ∈ {1, 2, 3, 4, 5} and n = 6m+2+ r.
If P is a ± set and p3 has label +, then P has a convex decomposition Γ with
at most 4n

3 − h(P ) + 6 elements.
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Proof: We will obtain a convex decomposition Γ′′ of P , by making P ′′ = P −
{p2}, and h′′ the number of vertices in conv(P ′′), applying Corollary 1 to P ′′,
and triangulate the interior of the region conv(P )−conv(P ′′), with h′−h(P )+2
triangles.

With this we obtain a convex decomposition Γ′′ of P , with at most (43 (n−
1)− h′′ + 5) + (h′′ − h(P ) + 2) = 4n

3 − h(P ) + 6 elements.

We have the following fact.

Proposition 35 Let γ be a convex polygon and p be a point in the interior of
γ. If P is the vertex set of γ, then P ∪ {p} has a convex decomposition with 3
elements.

Proof: Let Γ be the convex decomposition of P ∪{p}. We have that there must
be an edge e = vp for some v ∈ P . Otherwise the graph induced by Γ will be
disconnected. Let ℓ be the line containing v and p, directed from v to p. Let
α 6= β be the polygons sharing e. Since they are convex, we can assume that α
is the polygon which interior lies entirely on the left half plane bounded by ℓ.
Let pq be the adjacent edge to vp in conv(α). Observe that the angle ∠vpq > π,
so pq is not an edge of β. We must have another polygon sharing pq with α, so
|Γ| ≥ 3.

To get a convex decomposition with three elements, we pick an element
u ∈ P , and get the triangulation whith all its elements sharing u, see Figure
4.10 (left). Observe that p will be an interior point of a triangle △uvv′, where v
and v′ are adjacent in conv(P ). Let ℓ′ be the line containing u and p, directed
from u to p. Let L be the set of elements in P on the open left half plane bounded
by ℓ′. Similarly, we make R, the set of elements in P , on the open right half
plane bounded by ℓ′. Observe that {conv(R ∪ {u, p}), conv(L ∪ {u, p}),△pvv′}
is a convex decomposition of P ∪ p. See Figure 4.10 (right).

pp

v
v′

u u

L

R
......

Figure 4.10: Getting a convex decomposition of P ∪ {p} with three elements.
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We proceed now to prove our main theorem.

Theorem 36 P has a convex decomposition with at most 10
7 n − h elements,

where h is the number of vertices in conv(P ).

Proof: We obtain Graham’s triangulation ΓG(P ), and then modify it as indi-
cated in (C1) and (C2). Let h be the number of vertices in conv(P ) and Γ be
the resulting convex decomposition. By Lemma 31, |Γ| = n + k − h. Then, if
k ≤ 3n

7 , we are done. Also, if k = n
2 , then P is a ± set. So, by Lemma 32, it

has a convex decomposition with 4n
3 − h+ 6 elements, and again we are done.

In case that 3n
7 < k < n

2 , we obtain a ± set P ′ from P in following way:

Let C denote the set of vertices of conv(P ). Let s and t be the greatest and
smallest index of the elements in C ∩ A′

1 and C ∩ (A′

k \ {p1}) respectively. See
Figure 4.11 (center).

For i = 2, 3, . . . , k − 1 and j = 1, 2, . . . , k − 1, we take an element qi ∈ Ai

and one rj ∈ Bj in such a way that P ′ = {p1, ps, r1, q2, r2, . . . , qk−1, rk−1, pt} is
a ± set. See Figure 4.11 (right). Let h′ be the number of vertices in conv(P ′).
Observe that |P ′| = 2k and h′ ≤ h− (s− 2)− (n− t).

Figure 4.11: P and its ± collection associated. In this case s > 2 and t = n.

Let Γ′ be the convex decomposition of P ′ produced by Lemma 32, and
S = P \P ′. To get a convex decomposition Λ of P we start from Γ′ and add every
element in S one by one, also adding on Γ′ the polygons that Proposition 35
yields. Every element in S, when is added, increases in 2 the number of polygons
to the current decomposition, so |Λ| ≤ 4

32k − h′ + 6 + 2|S|. As |S| = n − 2k,
then |Λ| ≤ 2n− 4

3k − h′ + 6. Since k ≥ 3n
7 , we obtain that

|Λ| ≤
10n

7
− h′ + 6.

If s > 2 (or t < n) we make α the polygon p1p2 . . . ps (β = p1pt . . . pn
respectively), and add them to Λ. We will have that

|Λ| ≤
10n

7
− h+ 6.
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Chapter 5

Future work

5.1 Chromatic number of D(P )

1. It is known that a maximal thrackle, with vertices in P , has at most n edges,
those we find in sets in convex position. That is, we find the largest thrackles
when the point set is in convex position. We strongly believe that the lower
bound is given by Cn. That is

L(n) = f(n).

2. Let P = V5,5 ∪ V3,3. Such that, the elements in V5,5 are placed in a way that
conv(V5,5) is containing V3,3 in its interior, in a connected region of R2\D(V5,5).
The elements in V3,3 are placed in such a way that no line containing two of
its vertices intersects conv(A5) ∪ conv(B5). See Figure 5.1. This point set con-
figuration is interesting because it proves that nk ≥ 17, since it has no convex
hexagons. In Figure 5.1 we show the point set {(−54, 92), (−48, 89), (−40, 87),
(48, 89), (54, 92), (−12,−1.5), (−9,−1.25), (−6,−1.5), (6, 1.5), (9, 1.25), (12, 1.5),
(−81,−80), (−74,−76), (−72,−75), (74,−76), (81,−80)}.

Applying the main idea in Chapter 5, we can prove that χ(D(P )) ≤ f(5)+11.
On the other hand, if we color optimally both of V5,5 and V3,3, we obtain that
χ(D(P )) ≥ f(3) + 3 + f(5) + 5. Hence

12 ≤ χ(D(P )) ≤ 14.

We are interested in calculate the exact value of χ(D(P )).
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Figure 5.1: P = V5,5 ∪ V3,3.

5.2 Convex decompositions

1. We want to improve the current bound, or at least give another specific
convex decomposition that reaches the Hosono’s bound.

2. Assume that n is odd. Observe that if P is in convex position, then we can
find a convex decomposition with n−3

2 quadrilaterals and a triangle. We want to
show that, in general, these number of quadrilaterals remains. In other words,
we want to prove that, in any point set P , we can find a family Q, of convex
quadrilaterals, satisfying CD1, CD2 and CD3 such that |Q| ≥ n−3

2 .

In terms of convex decompositions, we want to prove that always we can
find a convex decomposition Γ consisting only in a set T , of triangles, and a set
Q, of quadrilaterals, such that |Q| ≥ n−3

2 .

With the given convex decomposition in Chapter 6, we can prove that, if
ma and mb are the number of Ai and Bi sets, with odd and even cardinality,
respectively, then

|Q| =
n− 3

2
+

ma −mb

2
.
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